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Preface

This edited volume contains the papers selected for presentation at the First
Workshop on Data Mining for Biomedical Applications (BioDM 2006) held in
Singapore on April 9, 2006. The workshop was held in conjunction with the 10th
Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD
2006), a leading international conference in the areas of data mining and knowl-
edge discovery. The aim of this workshop was to provide a forum for discussing
research topics related to biomedical applications where data mining techniques
were found to be necessary and/or useful.

BioDM 2006 received a total of 35 full-length paper submissions from seven
countries. Each submitted paper was rigorously reviewed by three Program Com-
mittee members. Although many papers were worthy of publication, only 14 reg-
ular papers can be accepted in the workshop for presentation and publication in
this volume. The accepted papers were organized into three sessions according
to their topics, with four papers on database & search, four papers on bio data
clustering, and six papers on in-silico diagnosis. The distribution of the paper
topics indicated that database query, search, similarity measure, feature selec-
tion, and supervised learning remained the current research issues in the field.
In addition to the contributed presentation, the BioDM 2006 workshop featured
a keynote talk delivered by Limsoon Wong, who shared his insightful vision on
the bioinformatics research problems related to protein–protein interactions.

This workshop would not have been possible without the help of many col-
leagues. We would like to thank the Program Committee members for their
invaluable review and comments. Given the extremely tight review schedule,
their effort to complete the review reports before the deadline was greatly ap-
preciated. In addition, we found some reviewers’ comments were really excellent,
as good as what is usually found in a survey paper—critical, constructive, and
comprehensive. These comments were very helpful for us in selecting the papers.

Very importantly, we would like to acknowledge the PAKDD 2006 Conference
Chair Lim Ee Peng for coordinating with the publisher. Without his effort,
these proceedings may not have been published in time for the workshop. We
also thank Elaine Koh and Chen Ling for their effort and time in workshop
registration and website maintenance.

Thank you all and may the papers collected in the volume inspire your
thoughts and research.

April 2006 Jinyan Li
Qiang Yang

Ah-Hwee Tan
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Exploiting Indirect Neighbours and Topological
Weight to Predict Protein Function from

Protein-Protein Interactions

Hon Nian Chua, Wing-Kin Sung, and Limsoon Wong

School of Computing and Graduate School for Integrated Sciences and
Engineering, National University of Singapore,

3 Science Drive 2, Singapore 117543
{g0306417, dcsswk, dcswls}@nus.edu.sg

Abstract. Most approaches in predicting protein function from protein-
protein interaction data utilize the observation that a protein often share
functions with proteins that interacts with it (its level-1 neighbours).
However, proteins that interact with the same proteins (i.e. level-2 neigh-
bours) may also have a greater likelihood of sharing similar physical
or biochemical characteristics. We speculate that two separate forms of
functional association accounts for such a phenomenon, and a protein is
likely to share functions with its level-1 and/or level-2 neighbours. We are
interested to find out how significant is functional association between
level-2 neighbours and how they can be exploited for protein function
prediction.

We made a statistical study on recent interaction data and observed
that functional association between level-2 neighbours is clearly observ-
able. A substantial number of proteins are observed to share functions
with level-2 neighbours but not with level-1 neighbours. We develop an
algorithm that predicts the functions of a protein in two steps: (1) as-
sign a weight to each of its level-1 and level-2 neighbours by estimating
its functional similarity with the protein using the local topology of the
interaction network as well as the reliability of experimental sources;
(2) scoring each function based on its weighted frequency in these neigh-
bours. Using leave-one-out cross validation, we compare the performance
of our method against that of several other existing approaches and show
that our method performs well.

J. Li et al. (Eds.): BioDM 2006, LNBI 3916, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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A Database Search Algorithm for Identification  
of Peptides with Multiple Charges Using Tandem  

Mass Spectrometry 

Kang Ning, Ket Fah Chong, and Hon Wai Leong 

Department of Computer Science, National University of Singapore,  
3 Science Drive 2, Singapore 117543 

{ningkang, chongket, leonghw}@comp.nus.edu.sg 

Abstract. Peptide sequencing using tandem mass spectrometry is the process of 
interpreting the peptide sequence from a given mass spectrum. Peptide sequenc-
ing is an important but challenging problem in bioinformatics. The advance-
ment in mass spectrometry machines has yielded great amount of high quality 
spectra data, but the methods to analyze these spectra to get peptide  
sequences are still accurate. There are two types of peptide sequencing methods 
–database search methods and the de novo methods. Much progress has been 
made, but the accuracy and efficiency of these methods are not satisfactory and 
improvements are urgently needed. In this paper, we will introduce a database 
search algorithm for sequencing of peptides using tandem mass spectrometry. 
This Peptide Sequence Pattern (PSP) algorithm first generates the peptide se-
quence patterns (PSPs) by connecting the strong tags with mass differences. 
Then a linear time database search process is used to search for candidate pep-
tide sequences by PSPs, and the candidate peptide sequences are then scored by 
share peaks count. The PSP algorithm is designed for peptide sequencing from 
spectra with multiple charges, but it is also applicable for singly charged spec-
tra. Experiments have shown that our algorithm can obtain better sequencing 
results than current database search algorithms for many multiply charged spec-
tra, and comparative results for singly charged spectra against other  
algorithms. 

1   Introduction 

As the volume of MS/MS mass spectra grows, the accompanying algorithmic tech-
nology for automatically interpreting these spectra has to keep pace.  An increasingly 
urgent problem is the interpretation of multi-charge spectra – MS/MS spectra with 
charge 3, 4, and 5 are available from the publicly accessible GPM (Global Proteome 
Machine) dataset [1]. It is foreseen that increasingly there will be more multi-charge 
spectra produced and so the problem of accurate interpretation of these spectra will 
become more important with time. 

Most existing algorithms for peptide sequencing have been focused largely on inter-
preting spectra of charge 1. Even when dealing with multiply-charged spectrum, they 
assume each peak is of charge 1. Only a few algorithms take into account or explicitly 
make known that they taken into account spectra with charge 2 or higher [2-4]. 
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    Database searching algorithms [5-8] rely primarily on the completeness of data-
bases, and the availability of a good scoring mechanism. Traditional database search 
methods have the common principle as this: the experimental spectrum is compared 
with the theoretical spectrum for each of the peptide in the database, and the peptide 
from the database with best match usually provides the sequence of the experimental 
peptide. 

The most widely used database search algorithms for analyzing mass spectra of 
peptides has been software such as SEQUEST [5] and MASCOT [9]. These algo-
rithms search a sequence database for peptides sequences which would produce ions 
of the mass observed for a particular spectrum, then score these candidate sequences 
against the observed spectrum. The best match between the peptide tandem mass 
spectrum and the database-derived peptide sequences is made via a combination of an 
ion intensity-based score plus a cross-correlation routine. The problems with these 
algorithms are that they only considered the ions of the mass observed for a particular 
spectrum, so they can work well for peptide sequences already in the database, but 
perform badly for peptides with post-translational modifications or other variations. 

It is well known that it is almost impossible to find a peptide sequence that matches 
exactly (100% match) with an entry in the database. Instead, many methods rely on 
matching much shorter sequences called tags [6, 10]. However, for some of them [6], 
the simple assumptions limit the identification accuracy. 

In [6], the authors use tag sequence for the search of the peptide sequence. A frag-
mentation spectrum usually contains a short, easily identifiable series of sequence 
ions, which yields a partial sequence. This partial sequence divides the peptide into 
three parts-regions 1, 2, and 3-characterized by the added mass m1 of region 1, the 
partial sequence of region 2, and the added mass m3 of region 3. The construct, m1 
partial sequence m3, is called a "peptide sequence tag" and it is a highly specific iden-
tifier of the peptide. An algorithm then uses the sequence tag to find the peptide in a 
sequence database. The main problem of this approach is that the model used in this 
algorithm is too simple. A 3-segment peptide sequence tag is used, but not enough to 
capture several highly-confident fragment sequences. The database search may return 
several candidates peptide sequences, but further discriminations are very limited. 

Because of these problems of the current database search algorithms, it is ideal if we 
can appropriately utilize all of (or as much as possible) the subsequences (tags) infor-
mation in the spectrum, and find out the peptide sequence in the database, or detect the 
post-translational modification that has most support. Recently, the InsPecT algorithm 
has been developed by Tanner etc. [10], which use more tags information for database 
search. This algorithm has used score function similar to Dancik score [11] to generate 
highly reliable tags from spectrum graph, extend tags and use trie to search for candi-
date peptides in database, and evaluate candidate peptides by statistical analysis.  
Another database search algorithm based on a set of tags is SPIDER [12]. 

We have developed a new database algorithm that extend the idea of using tags [6], 
and we have concentrated on the multi-charge spectrum data. We have tried to utilize 
all of the tags information, and tried to get the best results based on this information. 
In our algorithm, we first find out some strong tags from the spectrum, and connect 
them by their mass differences; these tag-mass combinations are called patterns of the 
peptide sequence, and the peptide sequences in the database that best match the pat-
terns are selected. This peptide sequence pattern (PSP) gives more flexibility and 
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accuracy to the algorithm, especially for the multiply charged spectra that are very 
hard to interpret. Then a linear time database search process is used to search candi-
date peptides sequences by PSPs. These candidate peptide sequences are then scored 
by share peaks count, ranked and output. 

In the following part, we will introduce our formulation of the problem and the da-
tabase search algorithm. We will then describe our experiment settings and analysis of 
the results in details. 

2   Problem Formulation of Multi-charge Peptide Sequencing 

Consider an MS/MS spectrum for a peptide sequence ρ = (a1a2…an) where aj is the jth 
amino acid in the sequence. The parent mass of the peptide is given by 

)()( 1=== n
k kamMm ρ . Consider a peptide fragment ρk = (a1a2…ak), for k  n that 

has fragment mass )()(
1=

= k

j jk amm ρ . The peaks in the spectrum come  

from peptide fragmentation and each peak p can be characterized by the ion-type, 
specified by (z, t, h)∈( z × t × h), where z is the charge of the ion, t is the basic  
ion-type, and h is the neutral loss incurred by the ion. The set of ion-types  
considered is )( htz Δ×Δ×Δ=Δ , where },,...,2,1{ α=Δ z   },,,{ ybat =Δ  and 

}.,,{ 32 NHOHh −−=Δ φ  The (z, t, h)-ion of the peptide fragment ρk will produced 

an observed peak p in the spectrum S, that has a mass-to-charge ratio of mz(p), that 
can be computed from the following formula [4]:  

),1())()(()()( −+++⋅= zhtzpmzm k δδρ  

where δ(t) and δ(h) are the mass difference for the respective ion-type and neutral-loss, 
respectively. The theoretical spectrum for ρ is defined in [4] as the set TS(ρ) = {p : p is 
observed peak for (z, t, h)-ion of peptide fragment ρk, for all (z, t, h)∈  and k=0,1,…,n} 
of all possible observed peaks for all ion types, and all possible fragments of ρ.  

In peptide sequencing, we are given an experimental mass spectrum and the prob-
lem is to determine the sequence of the original peptide. A spectrum S = {p1, p2, … , 
pn} of maximum charge α is a set of n peaks where each peak pk is described by two 
parameters – mz(pk), the observed mass-to-charge ratio and intensity(pk), its  intensity.  
To account for peaks that correspond to ions of charge 2, an “extension” process is 
performed to convert it to the equivalent peak of charge 1.  

The shared peaks count between the experimental spectrum S and a peptide ρ is 
defined as the number of peaks in S that has the same mass as those in TS(ρ), the 
theoretical spectrum of ρ. 

We have followed the computational model in [4]. To account for the different ion-
type (especially in multi-charge spectra), [4] introduced the concept of the extended 

spectrum α
βS  where α is the maximum charge of the spectrum S, and β is the largest 

charge considered for extension. In the extended spectrum α
βS , we “extend” each 

peak by generating a set of pseudo-peaks (or guesses) that correspond to the diff- 
erent ion-types with charge  β. Namely, for each peak pj∈S and ion-type  
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(z, t, h) ),},...,1({ ht Δ×Δ×∈ β  we generate pseudo-peak denoted by (pj, (z, t, h)) 

with a corresponding assumed fragment mass given by  
).1())()(()()) , ,(,( −+++⋅= zhtzpmzhtzpm jj δδ A corresponding extended 

spectrum graph of connectivity (defined below) d, )( α
βSGd , is also introduced. Each 

vertex in this graph represents a pseudo-peak (pj, (z, t, h)) in the extended spec-
trum α

βS , namely to the (z, t, h)-ions for the peak pj. For simplicity, we also denote the 
vertex by (vj, (z, t, h)). Each vertex represents a possible peptide fragment mass m(vj, 
(z, t, h)). An additional notion called the PRM (prefix residue mass) is also intro-
duced. This mass refers to the prefix mass of the interpreted peptide fragment mass 
for vertex, and is defined as PRMv(vi) = m(vi) if t(vi)∈{b-ion} else (a and y-ion) 
PRMv(vi)  = M – m(vi). 

In the “standard” spectrum graph, we have a directed edge (u, v) from vertex u to 
vertex v if PRM(v) is larger than PRM(u) by the mass of a single amino acid. In the 
extended spectrum graph of connectivity d, )( α

βSGd , we extend the edge connec-
tivity definition to mean “a directed path of no more than d amino acids”. Thus, we 
connect vertex u and vertex v by a directed edge (u, v) if the PRM(v) is larger than 
PRM(u) by the total mass of d’ amino acids, where d’  d. In this case, we say that the 
edge (u,v) is connected by a path of length up to d amino edges. Note that the number 
of possible paths to be searched is 20d and increased exponentially with d. In practice, 
we use d=2, except where it is explicitly stated otherwise. We illustrate the extended 
spectrum graph with an example shown in Fig. 1. 

 

Fig. 1. The difference between G1( 2
1S ) (left) and G2( 2

2S ) (right). There are no paths  from vb  to 
ve in G1( 2

1S ), but 4 paths in G2( 2
2S ) due to extension. 

3   Database Search Algorithm 

In our algorithm, we first find out some strong tags from the spectrum, and connect 
them by their mass differences; these tag-mass combinations are called Peptide  
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Sequence Patterns (PSPs), and the peptide sequences in the database that best match 
the PSPs are selected for further process. These PSPs give more flexibility and accu-
racy to the algorithm. Our algorithm is called the PSP algorithm. 

Peptide Sequence Patterns Algorithm 
The PSP algorithm first compute a set, BST, of “best” strong tags. Informally, these 
strong tags are highly reliable tags found in the spectrum S. To find strong tags, we 
first restrict the possible ion-types those that appear most frequently. The restricted set 
of ion-type is given by )( R

h
R
t

R
z

R Δ×Δ×Δ=Δ , where },1{=ΔR
z   },,{ ybR

t =Δ  and 
}.{φ=ΔR

h  Namely, we consider only charge 1, an only b-ions and y-ions and no 
neutral loss. We also define G1(

α
1S ,{ RΔ }), the extended spectrum graph with ion-

type restriction – namely, the spectrum graph G1(
α
1S ) where the ion types considered 

are restricted to those in RΔ . Then a strong tag T of ion-type (z, t, h) RΔ∈ is a maxi-
mal path   v0, v1, v2, …, vr  in the G1(

α
1S ,{ RΔ }), where every vertex vi∈T is of a (z, t, 

h)-ion. In each component of the graph, PSP algorithm computes a “best” tag with 
respect to some scoring function. Then the set BST is the set comprising the best tag 
for each component in the spectrum graph. Typically, the number of tags is much 
smaller than the number of peaks in S. (We refer the reader to [4] for more details.) 

Given the set BST of best strong tag, the Peptide Sequence Patterns (PSPs) algo-
rithm then proceeds to find the PSP that result from paths obtained by “connecting” 
the tags from BST.  This is done by searching for paths in the graph G(BST) in which 
the vertices are the strong tags in BST, and we have an edge from the tail vertex u of 
T1 to the head vertex v of T2 if the PRM(v) is larger than PRM(u). We note two major 
difference between G(BST) and the extended spectrum graph – first, the number of 
vertices in G(BST) is small, and second, the number of edges is also very much 
smaller since we link strong tags in a head-to-tail manner. 

The peptide sequence patterns (PSPs) that represent the paths compose of the tag 
fragments and mass fragments. Formally, PSPi = m1t1m2t2...mntnmn+1, in which mi and 
ti refer to mass difference and tag, respectively. Each tag in the sequence composes of 
those consecutive amino acids with very high probability to be together. Each mass is 
the sequence represents the value of masses between tags. 

After PSPs are retrieved, the PSPs are scored and ranked according to shared peaks 
count of the theoretical spectrum of the PSP and the experimental spectrum. Some top 
PSPs can be selected for database search.  

The database search algorithm is essentially an approximation pattern matching in 
the database, with PSP (composed of tags and mass differences) as pattern. The  
detailed database search algorithm will be described later. 

After database search based on PSPs, several candidate peptides are obtained. For 
each of candidate peptide sequences, score it by the shared peaks count of the theo-
retical spectrum of the candidate peptides and the experimental spectrum. 

The scheme of the PSP algorithm and the description of the algorithm are illus-
trated in Fig. 2 and Fig. 3, respectively. 
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PSP Scoring (Rank) 

Candidate Peptides

Peptide Scoring (Rank) 

Strong Tags 

Identified Peptides (Ranked) 

PSPs

Database Search 

 

Fig. 2. The scheme of the database search algorithm 

 

Fig. 3. The description of the database search algorithm 

Approximate Database Search Using PSP 
The matched candidate peptides are searched in the database by PSP. By searching 
the database, we can find out those protein sequences that have a certain number of 
matched tagged (with 1 or 2 amino acids errors). But whether there is good match of 
one peptide sequence in the protein with the whole PSP is not clear. Therefore, it is 
also a very interesting pattern matching problem. 

The approximate matching and pattern matching problem in the context of peptide 
sequencing is a special matching problem, since it involves both approximate tags 
matching and approximate masses matching. We have proposed a novel algorithm to 
solve this novel problem. 

The research on string matching has been investigated by many researchers, and 
the theory and algorithms are quite developed now. It is known that inexact string 
matching with errors can be done in linear time, and exact string matching with wild-
card can be done in linear time [13, 14]. Moreover, the semi-numerical inexact string 
matching algorithms [13, 14] can be very efficient if the patterns are relatively short. 
In the PSP algorithm, we have used the semi-numerical inexact string matching algo-
rithms, and the database search process has been done in linear time. 

The formal problem definition and the procedure of our algorithm are listed in Fig. 4. 

1. Search for strong tags 
• Transform spectrum to extended spectrum graph 
• Select all of the best strong tags (BST) in extended spectrum graph 

2. Generation of PSPs 
• Connect BSTs by mass differences 
• Generate a graph G, every vertex is a BST, every edge is one mass differ-

ence. Starting and ending vertex represent 0 and parent masses, respectively 
• List all of the paths from start to end vertexes 
• For each of the path Pi, generate the peptide sequence pattern PSPi 
• Score and rank PSPs by share peaks count score. 

3. Database search by PSP 
• (details in later part) 
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Problem: Approximate database search using PSP 
• Input: 

1) peptide sequence pattern (PSP) 
PSPi = m1t1m2t2...mntnmn+1 (mi and ti refer to mass and tag, respectively) 

2) database sequence, Seq 
• Output: 

1) Subsequence Seqi (or subsequences) in Seq that fulfill the requirements 
• Requirements: 

1) Approximate match with tags ti in Seq in order, with strict tolerance (every 
tag with 2 amino acids error); if at most m<n tags are present for every 
database sequences, then these m tags should be approximately matched 

2) Approximate match with masses mi in Seq in order, with loose tolerance 
(every mass with 50 Da mass error) 

3) Efficient process 
 
Procedure: Approximate database search using PSP 

1. Select the top PSPs (currently top 3), search database for candidate peptides that ap-
proximately match with the tags and masses of these PSPs within certain tolerance. 

2. Score and tank the candidate peptides by the share peaks count between their theo-
retical spectrum and experimental spectrum. 

3. Output these peptide sequences. 

Fig. 4. Formal description of the approximate pattern matching problem; and the procedure for 
the PSP algorithm 

An illustration of approximate match of PSP to the peptide sequences in the data-
base is in Fig. 5. 

 

Fig. 5. An example of the match of the peptide sequence pattern (first row) and the peptide 
sequence in the database (second row) 

As illustrated in Fig. 5, the PSP is “[205.343]RVTQ[370.879]KVS[480.166]”, with 
numbers in brackets the mass differences between tags; and the matched peptide se-
quence is “SIRVTQKSYKVSTSGPR”. In this example, the two tags “RVTQ” and 
“KVS” have matched the identical fragments in the peptide sequence (in other cases, 
1 or 2 amino acids mismatches are tolerable). The three mass differences also match 
with the fragments having similar masses. 

As to the running time, for one PSP having length of m and one peptide sequence 
in database having length n, the algorithm can operate in O(m+n) time. This is much 
better than the naïve sequence matching method, which requires O(m*n) time. Since 
there are thousands of peptide sequences in database, the efficiency improvement is 
very significant. If we load the peptide database into memory once, and search several 
PSPs against it, the average processing time for one PSP is even shorter. 
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4   Experiments 

In these experiments, dataset being used is GPM (Global Proteome Machine) dataset 
[1]. The experimental data are selected from GPM dataset randomly, with different 
charges. 

We have selected some spectra with different charges at random from GPM data-
sets for careful analysis. The methods to be compared are PeptideSearch [6], SPIDER 
[12], the 2 typical database search methods based on tags; MASCOT [9], one of the 
most popular database search methods; and the recent InsPecT [10] software. 

Both of PeptideSearch and SPIDER need a tagged sequence (sequence composed 
of tags and masses) for the peptide search; we have used the PSP generated by us as 
such tagged sequence. For MASCOT and InsPecT, the input is original spectrum data. 
The PeptideSearch method uses the non-redundant database in FASTA format, which 
obtain the peptide sequences from various protein databases. SPIDER, MASCOT, 
InsPecT and our algorithm used the SWISS-PROT protein database. The SWISS-
PROT protein database that we have used is Swiss-Prot Release 45.5 of 04-Jan-2005, 
which contains 167089 protein sequence entries. The default parameters have been 
used for the peptide sequencing for all of these algorithms, and the sequencing result 
with top rank is treated as the sequencing result. 

Due to the space constraint, we have only compared PSP algorithm with MASCOT 
[9] and InsPecT [10] in details, and explain the comparison results against Peptide-
Search [6] and SPIDER [12] briefly. 

The comparison with MASCOT is meaningful. The MASCOT algorithm is  
currently regarded as one of the most accurate database search algorithms, so the 
comparisons with MASCOT can tell our PSP algorithm is very good or just another 
normal algorithm. More important is that MASCOT is not based on tags, and the 
input is the spectrum data, same as our algorithm’s input. Therefore such comparison 
is fair. The results of the comparisons are shown in Table 1. The “accurate subse-
quences” refer to the subsequences of the correct sequences, and at the appropriate 
position of the sequences. 

Table 1. Comparisons of MASCOT and PSP on selected spectra. The accurate subsequences 
are labeled in italics and red. A “-” means that there is no result. 

M/Z charge correct MASCOT PSP 
1219.8 2 VAQLEQVYIR VAQLEQVYIR VAQLEQVYLR 
1397.9 2 ELEEIVQPIISK ELEEIVQPIISK ELEEIVQPIISK 
1644.9 2 PAAPAAPAPAEKTPVKK LHGGNAIGFMTLEGTK AAPAETSDLEFAVKK 
881.5 2 SPRLRPR LVIVALPR SPIVRGPR 
1448.7 2 LPGAYFFSFTLGK MLRAMVASGSELGK LVRGQNTVHILGK 
1888.1 3 VTHAVVTVPAYFNDAQR VTHAVVTVPAYFNDAQR IVVTQPRRISAVSVAER 
1934.1 3 DNHLLGTFDLTGIPPAPR DNHLLGTFDLTGIPPAPR KNVALIGLTVETGSALVPK 
1934.3 3 DNNLLGKFELTGIPPAPR DNHLLGTFDLTGIPPAPR DNNLLGKFELTGIPPAPR 
1838.8 3 SSYSLSGWYENIYIR SSLSISSMFCNYDETR SSYSLSGWYENIYIR 
1761.0 3 PAAPAPAEKTPVKKKAR LFFAFEKQESVPYR - 
1932.8 4 HKVYACEVTHQGLSSPVTK VFFDNNFQCILWFLK TLKVDGNDETFALSNISK 
2000.2 4 PAAPAAPAPAEKTPVKKKAR GQYEPVAEIGVGAYGTVYK PAAPKAAPATPAAPAPVYLR 
1936.1 4 SIRVTQKSYKVSTSGPR EGEYTGRTPSGADVTLQR SIRVTQKSYKVSTSGPR 
2101.1 4 KIETRDGKLVSESSDVLPK MVQPDSSSLAEVLDRVLDK KIETRDGKLVSESSDVLPK 
2140.2 4 KASGPPVSELITKAVAASKER GERPPDVETTVILPESVFR KASGPPVSELITKAVAASKER 
1933.3 4 VTIAQGGVLPNIQAVLLPK DPEDGRPAPGVEHSNGLGK VTIAQGGVLPNIQAVLLPK 
3292.8 5 LLILEAGHRMSAGQALDHPWVITMAAGSSMK EPLELEDIPIEIDNDDDEDDEDGSGVEYD [387.26]WCGG[12.55]GD[1438.93]PIDIYMK 
3291.8 5 LEILLHLTSLSQTFNHFFPEEKFETLR QPIYPYGSPMGAHVYYPPPVAQPPVRGPVR SPKVPRTLLTLDEQVLSFQRKVGILYCR 
3151.2 5 MGSMFRSEEVALVQLFLPTAAAYTCVSR GSGLPDLVLDVAGEFYKFGLEGIGAVLLGSR DEEVDELYREAPIDKKGNFNYIEFTR 
3752.0 5 LPPGEQCEGEEDTEYMTPSSRPLRPLDTSQSSR CTPFRPSAMSPDFVAQVPLAPDLLPLAELFQRAR RVEKNALKSQLRSMQEQLAEMQQKYVQLCSR 
2359.0 5 CDKDLDTLSGYAMCLPNLTR LGVMLVGWGGNNGSTLTAGVIANR [1655.89]AGVPCTR 

It is obvious from the table above that in these cases; our algorithm is more accu-
rate than MASCOT. MASCOT can find exact match in only 4 cases, and ours can 
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find exact match in 8 cases. In other cases, the results of our algorithm also have 
comparable number of matches to the true peptide sequences. 

It is known that recent MASCOT has already incorporated the tags function similar 
to PeptideSearch [6], but our algorithm can still beat MASCOT for some spectrum 
data. This shows that our PSP algorithm, which contains the new strategies to find 
tags from spectra, as well as our database search techniques, is quite effective. 

The comparisons of PSP algorithm against PeptideSearch [6] and SPIDER [12] 
(details not shown) show that the PSP algorithm has comparable or higher accuracies 
than these tag-based algorithms. 

To evaluate the performance of PSP and InsPecT [10] algorithm, we use the fol-
lowing accuracy measures: 

 
Sensitivity  = # correct / | ρ |                    Tag-Sensitivity = # tag-correct / | ρ | 
Specificity =  # correct / | P |                   Tag-Specificity = # tag-correct  / | P | 

 
where #correct is the “number of correctly sequenced amino acids” and #tag-correct 
is “the sum of lengths of correctly sequenced tags (of length > 1)”. The number of 
correctly sequence amino acids is computed as the longest common subsequence (lcs) 
of the correct peptide sequence ρ and the sequencing result P.  The sensitivity indi-
cates the quality of the sequence with respect to the correct peptide sequence and a 
high sensitivity means that the algorithm recovers a large portion of the correct  
peptide. The tag-sensitivity accuracy take into consideration of the continuity of the 
correctly sequences amino acids. For a fairer comparison with algorithms that only 
outputs the highest scoring tags (subsequences) we also use specificity and  
tag-specificity measures.  

Results show that our database search algorithm has comparable accuracy results 
to Inspect based on our accuracy functions. Though the PSP algorithm has lower 
accuracies than Inspect for spectrum data with charge 1 and 2, it has comparable or 
higher accuracies compared with Inspect for spectrum with charge > 2. This shows 
the power of PSP for multiple charge spectrum data. In Table 2, the accuracies in cells 
are represented in a (specificity accuracy/sensitivity accuracy/[tag specificity accu-
racy/tag sensitivity accuracy]) format. 

Table 2. The accuracy results of PSP and Inspect on GPM datasets 

Charge Number of spectrum PSP Inspect 
1 756 0.301/0.285[0.110/0.108] 0.448/0.446[0.287/0.289] 
2 874 0.412/0.400[0.213/0.212] 0.460/0.455[0.305/0.305] 
3 454 0.338/0.339[0.143/0.144] 0.360/0.362[0.193/0.194] 
4 207 0.302/0.322[0.099/0.109] 0.276/0.292[0.102/0.109] 
5 37 0.286/0.340[0.088/0.120] 0.241/0.279[0.077/0.093] 
Total 2328 0.350/0.343[0.153/0.152] 0.417/0.417[0.256/0.257] 

We have calculated the ratios that the completely correct peptides are sequenced by 
the algorithms. Results (not shown here) show that Inspect has better performance 
that PSP algorithm based on this criteria. 
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We have also compared some of our sequencing results with those obtained from 
Inspect, and listed the sequencing results in details. From these results, we can see 
that both PSP and Inspect can correctly predict a large portion of the peptide se-
quences. Results are shown in Table 3. The “accurate subsequences” refer to the sub-
sequences of the correct sequences, and at the appropriate position of the sequences. 

Table 3. Comparisons of Inspect and PSP on selected spectra. The accurate subsequences are 
labeled in italics and red. A “-” means that there is no result. 

The experiments on ISB datasets [15] are also performed. The results show that our 
results are not as accurate as the results of Inspect, but comparable to Mascot’s (re-
sults not shown here). 

Other experimental results (details not shown) clearly show that the processing 
time of our PSP algorithm is moderate. Running on a PC with 3GHz of CPU and 1GB 
of RAM, it uses about 10 seconds for the sequencing of one spectrum (the average of 
50 PSPs checked). The time is also dependent on the quality of the spectrum data, 
especially the accuracy of the parent mass, so high quality data may result in fast 
process as well as high accuracy. For example, the running time is about 60 seconds 
for a spectrum data, for which we have generated more than 300 PSPs in step 2 of the 
PSP algorithm (refer to Fig. 4). The running time is comparable with typical methods 
such as Sequest [5], but slower than ImPacT[10]. 

Since the process is fast, we have established a web-based portal for the peptide se-
quencing based on PSP algorithm. It is located at http://ras-0.comp.nus.edu.sg/~msms/. 

5   Conclusions 

We have developed a database search algorithm for peptide sequencing using tandem 
mass spectrometry. The key steps of the algorithm are the selection of the tags from 
the spectrum of the peptide, and the approximate match of the PSP against the pep-
tides in the database. Our algorithm does not need the comparison of the experimental 
spectrum to the theoretical spectrum of the peptide in the database; and in most of the 
cases, it does not even need to check all of the peptides in the database. Since our 
algorithm can output results that contain uninterrupted mass values, it has the poten-
tial to cope with the post-translational modifications. Experiments show that our  
algorithm is comparable to or more accurate than other database search algorithms, 
including those based on tags. 

M/Z charge correct Inspect PSP 
1219.8 2 VAQLEQVYIR VAQLEQVYIR VAQLEQVYLR 
1397.9 2 ELEEIVQPIISK ELEEIVQPIISK ELEEIVQPIISK 
1644.9 2 PAAPAAPAPAEKTPVKK PAAPAAPAPAEKTPVKK AAPAETSDLEFAVKK 
881.5 2 SPRLRPR PSIVGRPR SPIVRGPR 
1448.7 2 LPGAYFFSFTLGK LPQSLKLHIIVGK LVRGQNTVHILGK 
1888.1 3 VTHAVVTVPAYFNDAQR VTHAVVTVPAYFNDAQR IVVTQPRRISAVSVAER 
1934.1 3 DNHLLGTFDLTGIPPAPR DNHLLGTFDLTGIPPAPR KNVALIGLTVETGSALVPK 
1934.3 3 DNNLLGKFELTGIPPAPR DNHLLGTFDLTGIPPAPR DNNLLGKFELTGIPPAPR 
1838.8 3 SSYSLSGWYENIYIR SDGGLVMKRDPTEYIR SSYSLSGWYENIYIR 
1761.0 3 PAAPAPAEKTPVKKKAR - - 
1932.8 4 HKVYACEVTHQGLSSPVTK - TLKVDGNDETFALSNISK 
2000.2 4 PAAPAAPAPAEKTPVKKKAR PAAPAAPAPAEKTPVKKKAR PAAPKAAPATPAAPAPVYLR 
1936.1 4 SIRVTQKSYKVSTSGPR YGKPFKLIFHVSTLQR SIRVTQKSYKVSTSGPR 
2101.1 4 KIETRDGKLVSESSDVLPK KIETRDGKLVSESSDVLPK KIETRDGKLVSESSDVLPK 
2140.2 4 KASGPPVSELITKAVAASKER KASGPPVSELITKAVAASKER KASGPPVSELITKAVAASKER 
1933.3 4 VTIAQGGVLPNIQAVLLPK VAQLEQVYIR VTIAQGGVLPNIQAVLLPK 
3292.8 5 LLILEAGHRMSAGQALDHPWVITMAAGSSMK ELEEIVQPIISK [387.26]WCGG[12.55]GD[1438.93]PIDIYMK 
3291.8 5 LEILLHLTSLSQTFNHFFPEEKFETLR PAAPAAPAPAEKTPVKK SPKVPRTLLTLDEQVLSFQRKVGILYCR 
3151.2 5 MGSMFRSEEVALVQLFLPTAAAYTCVSR PSIVGRPR DEEVDELYREAPIDKKGNFNYIEFTR 
3752.0 5 LPPGEQCEGEEDTEYMTPSSRPLRPLDTSQSSR LPQSLKLHIIVGK RVEKNALKSQLRSMQEQLAEMQQKYVQLCSR 
2359.0 5 CDKDLDTLSGYAMCLPNLTR VTHAVVTVPAYFNDAQR [1655.89]AGVPCTR 
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Currently, we have used a linear time approximate pattern matching algorithm to 
search the PSP against the database in linear time, and we have not tried other effi-
cient pattern matching algorithms. Also, the scoring of the candidate peptide se-
quences against the theoretical spectrum is simply based on share peaks count. We 
have seen room for further improvements in efficiency and accuracy based on our 
current computational model, and we have been working on them. 

The database search algorithm is essentially a pattern matching algorithm in the 
context of the peptides sequencing, so it is interesting to see if this program has any 
other applications such as text mining. 

Acknowledgement 

The authors would like to thank Pavel Pavzner for insightful discussion. This work 
was partially supported by the National University of Singapore under grant R252-
000-199-112. 

References 

[1] R. Craig, J. P. Cortens and R. C. Beavis. Open source system for analyzing, validating, 
and storing protein identification data. J Proteome Res., 3:1234-1242, 2004. 

[2] A. Frank and P. Pevzner. PepNovo: De Novo Peptide Sequencing via Probabilistic Net-
work Modeling. Anal. Chem., 77:964 -973, 2005. 

[3] B. Ma, K. Zhang, C. Hendrie, C. Liang, M. Li, A. Doherty-Kirby and G. Lajoie. PEAKS: 
Powerful Software for Peptide De Novo Sequencing by MS/MS. Rapid Communications 
in Mass Spectrometry, 17:2337-2342, 2003. 

[4] K. F. Chong, K. Ning and H. W. Leong. De Novo Peptide Sequencing For Multiply 
Charged Mass Spectra. To appear APBC2006, 2006. 

[5] J. K. Eng, A. L. McCormack and I. John R. Yates. An approach to correlate tandem mass 
spectral data of peptides with amino acid sequences in a protein database. JASMS, 5: 
976-989, 1994. 

[6] M. Mann and M. Wilm. Error-tolerant identification of peptides in sequence databases by 
peptide sequence tags. Analytical Chemistry, 66:4390-4399, 1994. 

[7] D. Fenyo, J. Qin and B. T. Chait. Protein identification using mass spectrometric informa-
tion. Electrophoresis, 19:998-1005, 1998. 

[8] P. A. Pevzner, V. Dancik and C. L. Tang. Mutation-tolerant protein identification by 
mass-spectrometry. International Conference on Computational Molecular Biology 
(RECOMB 2000), 231-236, 2000. 

[9] D. N. Perkins, D. J. C. Pappin, D. M. Creasy and J. S. Cottrell. Probability-based protein 
identification by searching sequence databases using mass spectrometry data. Electropho-
resis, 20:3551-3567, 1999. 

[10] S. Tanner, H. Shu, A. Frank, M. Mumby, P. Pevzner and V. Bafna. Inspect: Fast and ac-
curate identification of post-translationally modified peptides from tandem mass spectra. 
submitted, 2005. 

[11] V. Dancik, T. Addona, K. Clauser, J. Vath and P. Pevzner. De novo protein sequencing 
via tandem mass-spectrometry. J. Comp. Biol., 6:327-341, 1999. 



 A Database Search Algorithm for Identification of Peptides with Multiple Charges  13 

[12] Y. Han, B. Ma and K. Zhang. SPIDER: Software for Protein Identification from  
Sequence Tags with De Novo Sequencing Error. 2004 IEEE Computational Systems  
Bioinformatics Conference (CSB'04), 2004. 

[13] D. Gusfield. Algorithm on Strings, Trees, and Sequences: Computer Science and Compu-
tational Biology. Cambridge University Press, 1st edition, 1997. 

[14] S. Wu and U. Manber. AGREP - A Fast Approximate Pattern-matching Tool. Proceed-
ings of the Winter 1992 USENIX Conference, 153-162, 1992. 

[15] A. Keller, S. Purvine, A. I. Nesvizhskii, S. Stolyar, D. R. Goodlett and E. Kolker.  
Experimental protein mixture for validating tandem mass spectral analysis. OMICS, 
6:207-212, 2002. 



J. Li et al. (Eds.): BioDM 2006, LNBI 3916, pp. 14 – 23, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Filtering Bio-sequence Based on Sequence Descriptor 

Te-Wen Hsieh1, Huang-Cheng Kuo1, and Jen-Peng Huang2 

1 Department of Computer Science and Information Engineering, 
National Chiayi University, Taiwan 

{s0930295, hckuo}@mail.ncyu.edu.tw 
2 Department of Information Management, 

Southern Taiwan University of Technology, Taiwan 
jehuang@mail.stut.edu.tw 

Abstract. Study on biological sequence database similarity searching has re-
ceived substantial attention in the past decade, especially after the sequencing 
of the human genome. As a result, with larger and larger increases in database 
sizes, fast similarity search is becoming an important issue. Transforming se-
quences into numerical vectors, called sequence descriptors, for storing in a 
multidimensional data structure is becoming a promising method for indexing 
bio-sequences. In this paper, we present an effective sequence transformation 
method, called SD (Sequence Descriptor) which uses multiple features of a se-
quence including Count, RPD (Relative Position Dispersion), and APD (Abso-
lute Position Dispersion) to represent the original sequence data. In contrast to 
the q-gram transformation method, this avoids the problem of exponentially 
growing vector size. Also, we present a transformation, called ST (Segment 
Transformation), which recursively divides sequence data into equal length 
subsequences, and concatenates them after transformation of the subsequences. 
Experiments on human genome data show that our transformation method is 
more effective than the q-gram transformation method. 

Keywords: Bio-sequence, Sequence Descriptor, Similarity Searching, KNN. 

1   Introduction 

In biological databases, such as genome and protein databases, searching for se-
quences with high alignment scores in relationship to the query sequence is an essen-
tial task. Researchers have discovered lots of information of interest via the sequence 
similarity analysis. Similar bio-sequences of different species usually imply the rela-
tionship of function and evolution. Moreover, there is implicit structural information 
for protein data. For instance, approximate sequence analysis has assisted the detec-
tion of certain strains of Escherichia coli (E. coli) bacteria, often responsible for infant 
diarrhea and gastroenteritis.  

Although the traditional DP (Dynamic Programming) alignment algorithm guaran-
tees the accurate alignment result, it is impractical because of its requiring both O(n2) 
in time and space. Therefore, several heuristics have been developed, such as BLAST 
[1, 17], Pattern Hunter [11, 12], and FASTA [14]. These methods not only provide 
good accuracy, but also execute efficiently. Particularly, BLAST is the most popular 
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method because of its excellent accuracy and speed. However, a study of the perform-
ance of BLAST shows that BLAST is becoming 64% slower each year because of the 
exponentially growth of biological databases [7]. 

Filtering has been suggested to solve the problem. Researchers transform the se-
quences into numerical vector space [15] for storing in a multidimensional index [16]. 
Then DP or another heuristic algorithm is used to align the small number of selected 
sequences with the query sequence. 

In this paper, we present an effective transformation method, called SD (Sequence 
Descriptor), which uses multiple features including Count, RPD (Relative Position 
Dispersion) and APD (Absolute Position Dispersion). In contrast to the q-gram trans-
formation method [13], in which vector size grows exponentially with q, we use fewer 
dimensions and receive better accuracy. Additionally, we also present a transforma-
tion method, called ST (Segment Transformation), which is more powerful than 
Wavelet Transformation. It recursively divides sequence data into equal length subse-
quences and concatenates them after transformation. 

The rest of the paper is organized as follows. Section 2 discusses the background 
and related work. Terminology and formulation are in section 3. Section 4 discusses 
the proposed transformation techniques and their integration. Section 5 demonstrates 
a concise empirical performance analysis and the simulation results. Finally, section 6 
contains the conclusion and future work. 

2   Background and Related Work 

In a typical sequence similarity search application, there are two commonly used 
query types: (i) k-Nearest Neighbor (k-NN), which asks for the most similar k se-
quences to the query sequence; and the (ii) -range query, which asks for sequences 
sufficiently similar to the query sequence.  In -range queries, users must have enough 
domain knowledge to predetermine a threshold  to check whether the sequences in 
the database and the query sequence are similar or not.  In contrast to -range queries, 
k-NN queries are more popular because of its convenience. Therefore, we perform  
k-NN queries for illustrating our methods. 

As the biological databases become larger and larger, even the heuristics are no 
longer feasible. Therefore, a new method of filtration has been developed. Research-
ers transform original sequence data into numerical vector space, and filter out  
the distant potential dataset via metric distance functions. Transforming sequence  
data into a frequency domain is the most popular method. Some variants of it are  
still constructed on frequency domains. For instance, a DNA sequence S = 
“ACGGTCAGAA” on  = {A, C, T, G} can be transformed into a frequency domain 
as [4, 2, 1, 3]. 

In [13], frequency transformation of a sequence S into N-gram, FT#N(S) is defined 
as a vector of frequencies of N-grams. For the above DNA sequence S, FT1(S) =  
[4, 2, 1, 3], and FT2(S) = [1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1]. 

Moreover, they also combine their FT#N(S) with Wavelet Transformation [13].  
N-gram Frequency Wavelet Transformation is represented as WT#N(S). After divid-
ing the sequence S into S  and S , they compute the transformations V =FT#N(S ) 
and V =FT#N(S ). Then they concatenate the addition and subtraction of those two  
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vectors, i.e., [V  + V , V  - V ]. The definition given here is the first two wavelet coef-
ficients of the last recursion in that formal definition. This definition promotes  
efficiency with the elimination of recursion. In their experiment results WT#N(S) is 
better than FT#N(S). For the above DNA sequence S, WT1(S) = [4, 2, 1, 3, -2, 0, 1, 1]. 

However, in q-gram transformation the vector size grows exponentially with q. 
And the Wavelet Transformation also makes the vector size double. The tradeoff 
between accuracy and vector size must be considered. In their research they show 
N=2 producing satisfactory results. 

We present a transformation with multiple features to represent the original se-
quence data. As such, we can use fewer dimensions to create better accuracy. In addi-
tion, we present a better transformation method, Segment Transformation, in contrast 
to Wavelet Transformation. 

3   Terminology and Formulation  

Definition 1 (Count). Let S = s1, . . . , sn be a sequence over the alphabet u = { 1, . . . , 
u}, then the Count of S, called C(S) is defined as: C(S) = [C1, . . . , Cu], where Ci (  

0) corresponds to the total number of i in S, and 
=

==u

i i nSC
1

. For example, 

for the above DNA sequence S, C(S) = [4, 2, 1, 3]. 

Definition 2 (Relative Position Dispersion, RPD). Let S = s1, . . . , sn be a sequence 

over the alphabet u = { 1, . . . , u}, and
i

Nα be the number of iα  in S. 
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sponding term in RPD is set to 0. For example, for the above DNA sequence S, 
RPD(S) = [(62+22+12)/(4-1), 42/(2-1), 0, (12+42)/(3-1)] = [13.67, 16, 0, 8.5]. 

Definition 3 (Absolute Position Dispersion, APD). Let S = s1, . . . , sn be a sequence 

over the alphabet u = { 1, . . . , u}, and 
i

Nα be the number of iα in S. 

Let
iii Npp

ααα ,1, ,..., represent the positions of iα in S. Absolute Position Dispersion 

of S, called APD(S), is defined as: APD(S) =[
( ) ( )

1

111

2
,

2
1, ...

α

αα α

N

pp N++
, … , 

( ) ( )
u

uuu

N

pp N

α

αα α

2
,

2
1, ...++

]. 



 Filtering Bio-sequence Based on Sequence Descriptor 17 

Definition 4 (kth-level Segment Transformation, kth-ST). Let S = s1, …, sn be a 
sequence over the alphabet u = { 1, . . . , u}, kth-level Segment Transformation re-

cursively divides S into 2k equal-length subsequences of S, { }kkk SSS
2,22,1

,...,= , 

kth-ST(S) = { }kkk VV
222,1 ,,..., , 0 k log2n (Vi,2

k indicates the vector of Si,2
k after 

transformation.) Due to the vector size limitation, and we mainly compare with the 
first and second coefficients of Wavelet Transformation, our Segment Transformation 
indicates the 1st-level Segment Transformation throughout this paper. 

4   Transformation Techniques 

Given a sequence database, blocking is initiated first.  It means that we partition the 
initial sequences into equal length subsequences (blocks).  There are mainly three 
different blocking methods: i) incremental blocking:  Each of the consecutive blocks 
of length l, overlap by l − 1 residues; ii) half overlap blocking:  Each of the consecu-
tive blocks of length l, overlap by l/2 residues; and iii) non-overlapping blocking.  As 
more blocks are extracted, we observed better accuracy, however resulting in a higher 
computational cost.  Therefore, there is a tradeoff between cost and accuracy. 

Consequently, we can execute our SD (Sequence Descriptor) transformation on 
each subsequence (block). In SD transformation, we first compute the C(S), RPD(S), 
and APD(S) which were defined in the above section. 

Count of S, C(S), counts total occurrences of each kind of base in S.  Because each 
subsequence has the same length, it indicates frequencies of occurrences of each kind 
of base. Relative Position Dispersion of S, RPD(S), computes the average squared 
distance between each pair of the nearest similar base.  It indicates the degree of rela-
tive dispersion of each kind of base in S. Absolute Position Dispersion of S, APD(S), 
computes the average square distance from the first base of each kind of base in S.  It 
indicates the degree of absolute dispersion of each base in S. 

In contrast to q-gram transformation using only one feature, SD uses multiple fea-
tures in addition to frequency. We can expect that our method will result in a better 
order preservation because using multiple features can represent the original sequence 
data better if each feature is feasible. Additionally, our method make the vector size 
grow linearly according to the number of features. Therefore, we avoid the problem of 
exponential growth in vector size as found in q-gram transformation. 

Because we use multiple features and suppose presently that each feature has the 
same weight, we must normalize each feature vector first. Then we concatenate them 
to represent the original sequence S, SD(S) = [C(S), RPD(S), APD(S)]. Moreover, we 
need to normalize each element in SD(S) to be an integer between 0 and Max in order 
to reduce storage space. For example, for the above DNA sequence S, SD(S) = [4/10, 
2/10, 1/10, 3/10, 16.67/41.17, 16/41.17, 0/41.17, 8.5/41.17, 57.75/132.42, 20/132.42, 
25/132.42, 29.67/132.42] = [0.4, 0.2, 0.1, 0.3, 0.4, 0.39, 0, 0.21, 0.44, 0.15, 0.19, 
0.22]. Then we normalize each element to be an integer between 0 and 65535, SD(S) 
= [26214, 13107, 6554, 19661, 26214, 25559, 0, 13762, 28835, 9830, 12452, 14418]. 

SSD (Segment Sequence Descriptor), combination of SD (Sequence Descriptor) 
and ST (Segment Transformation), partitions the sequences (blocks) into two equal 
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length subsequences before SD transformation, i.e., SSD(S) = [C(S1,2), C(S2,2), 
RPD(S1,2), RPD(S2,2), APD(S1,2), APD(S2,2)]. 

After all subsequences (blocks) in the database have been transformed into numeri-
cal vector space using SD (or SSD) transformation, they can be stored in a multidi-
mensional indexing structure, such as R-tree [8], to speed up query procedure. All of 
the above procedures are completed in the offline phase, and the searching procedure 
is executed online. 

In the query procedure we also block the query sequence first. Then each query 
subsequence (block) is transformed into its corresponding numerical vector. Accord-
ingly, we discard the distant sequences. 

5   Performance Analysis 

In our experiments, considering the vector size, we mainly compare FT#2(S) with our 
SD(S), WT#2(S) with our SSD(S), and Wavelet Transformation with our Segment 
Transformation. We take a sample from 18th chromosome of the human genome 
[NCBI, http://www.ncbi.nlm.nih.gov/] as our testing data for performing k-NN 
searching. We incorporate a non-overlapping blocking method with block size = 500 
and use L1 distance function to compute the distance between two vectors. First, we 
randomly select a start point in that sample sequence and extract 1000 subsequences 
as our data sequences. Then we extract 30 query subsequences from the same start 
point in the same sequence as our query sequences. 

Table 1. Vector size (# of dimensions) in each transformation method 

 SD FT#2 SSD WT#2

vector size(# dimension) 12 16 24 32 

 

Fig. 1a. True Positives for k-NN on human chromosome18 dataset when comparing WT#2 
with ST#2 
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Fig. 1b. True Positives for k-NN on human chromosome18 dataset when compared WSD with 
SSD 

 

Fig. 2. True Positives for k-NN on human chromosome18 dataset 

In contrast to FT#2(S) and WT#2(S) respectively, our transformation methods only 
use 75% of the vector size dimensions as shown in Table 1. Therefore, we can theo-
retically save 25% running time (query time) and memory space; especially, when we 
take into account the I/O time. The I/O time affects the total execution time because 
I/O is usually the most time consumed during the execution of a process. 

In Figure 1a, we observe that ST#2 (2-gram Frequency Segment Transformation) 
has a better TPR (True Positive Rate) than WT#2 (2-gram Frequency Wavelet Trans-
formation). Also we can see that SSD (Segment Sequence Descriptor) has a better 
TPR than WSD (Wavelet Sequence Descriptor) in Figure 1b. It indicates that whether 
we use SD or q-gram transformation, Segment Transformation is better than Wavelet 
Transformation. 

In Figure 2, we observe that our SD Transformation is better than 2-gram Trans-
formation, and our SSD is better than WT#2(S). When comparing our SD transforma-
tion with the  2-gram  transformation,  there  is  about 3.3%  average  improvement  in  
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Fig. 3. Filtration for k-NN on human chromosome18 dataset 

TPR. And our SSD also has about a 4.8% average improvement in TPR when com-
pared to WT#2(S). Even our SD transformation is better than WT#2(S) in most k 
values. 

We also use filtration ratio to compare our transformation method with q-gram 
transformation method and change the dataset size to be 10000 subsequences. In  
Figure 3, we can see that our SD and SSD have a better filtration ratio in almost all k 
values than FT#2 and WT#2 respectively. It means that when we search the correct k 
nearest neighbors for a query sequence, we can discard more distant potential dataset 
as compared to q-gram transformation methods. Therefore we can reduce a larger 
amount of time consuming alignments in second phase. Take k=30 as an example,  
our SD has a better filtration ratio 13.68% than 14.3% of FT#2. And our SSD has a 
better filtration ratio 12.2% than 14.35% of WT#2. In other words, we only need to 
align no more than 1368 subsequences when we want to search 30 correct nearest 
neighbors for a query using SD or SSD. 

In order to understand how well each transformation method reflects the distance 
between a pair of sequences, we compute the distance between vectors (sequence 
descriptors) of sequences, and perform sequence alignments using dynamic 
 

 

Fig. 4a. DP Scores and FT#2 Distances 
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Fig. 4b. DP Scores and SD Distances 

 

Fig. 4c. DP Scores and WT#2 Distances 

 

Fig. 4d. DP Scores and SSD Distances 

programming to obtain DP scores between the pair of sequences. For more precise 
experimental results, we randomly selected 10,000 pairs of subsequences from the 
same sequences used in the TPR measurement. Figure 4a to figure 4d show the  
relationship between sequence descriptor distances and DP scores. The correlation 
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coefficients are -0.68, -0.75, -0.68, and -0.78, for FT#2, SD, WT#2, and SSD trans-
formations, respectively. The correlation coefficient improves 0.07 from FT#2 to SD. 
The improvement is about 0.1 from WT#2 to SSD. Even SD, with vector size 12, has 
a better correlation coefficient than WT#2, with vector size 32. 

Figure 5 shows that our SD has better correlation coefficients than FT#2 on each 
block size except block size equals to 100 and 300. However, too small block size 
will result in too many blocks. On each block size, our SD has a 0.02 average im-
provement in correlation coefficient as compared to FT#2. And our SSD has better 
correlation coefficients on all tested block sizes. It has a 0.06 average improvement in 
correlation coefficient as compared to WT#2. 

 

Fig. 5. Correlation Coefficients of Varied Block Size (Subsequence Length) 

6   Conclusion and Future Work 

In this paper, we present an effective transformation method, called SD (Sequence 
Descriptor). It uses multiple features to represent the original sequences. The vector 
size of SD is smaller than that of q-gram transformation, which grows exponentially. 
In addition, we present a Segment Transformation which has better accuracy as com-
pared with Wavelet Transformation. In our experiments, we demonstrate a better 
method than the q-gram transformation. 
    In the future, we will test a large protein dataset and DNA sequences of other  
species.  Finally, we hope to build a complete framework for a multidimensional 
indexing approach for stringing similarity search problems, which can be helpful for 
understanding the “boundary effect” on transformations. 
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Abstract.  In the domain of genomic research, the understanding of specific 
gene name is a portal to most Information Retrieval (IR) and Information Ex-
traction (IE) systems. In this paper we present an automatic method to extract 
genomic glossary triggered by the initial gene name in query. LocusLink gene 
names and MEDLINE abstracts are employed in our system, playing the roles 
of query triggers and genomic corpus respectively. The evaluation of the ex-
tracted glossary is through query expansion in TREC2003 Genomics Track ad 
hoc retrieval task, and the experiment results yield evidence that 90.15% recall 
can be achieved. 

1   Introduction 

Biomedicine is really an active academic discipline, the amount of literatures in which 
is exploding with recording the new discoveries of gene, gene regulation, and protein-
protein interaction. Biomedical entities (e.g., genes, proteins) are usually nominated 
and represented in different forms by authors within their articles, thus, there is a spe-
cial section naming “Glossary” in most biomedical journals (e.g., Journal of Cell Bi-
ology, Journal of Biological Chemistry). With the help of glossary, reader can easily 
understand the meaning of the unfamiliar symbol, and get the linking knowledge in 
the article. The above glossary depends on authors to build. However, for a large 
amount of biological textual resources distributed in the web and databases, such as 
MEDLINE which contains approximately 15 million records back to 1950s in life sci-
ences [1], it is impossible to organize such kind of glossary manually. Furthermore, in 
gene-based information systems, both DNA sequence databases (e.g., GenBank [2]) 
and genomic literature analysis systems (e.g., MeKE [3]), gene name becomes the en-
try to access the knowledge, while synonyms and homonyms of gene pose a great 
challenge for these systems. Thus, the ability to enhance gene symbol explanation is 
becoming increasingly important.  

During the past decades, many efforts have been made to facilitate the understand-
ing of gene-related information. They include databases containing gene names as 
well as their synonyms (e.g., LocusLink [4, 5], euGenes [8, 9]), thesauruses invol-
ving gene lexicons (e.g. MeSH [10], UMLS [11, 12]), and systems extracting mea- 
ningful acronym pairs from biomedical literature (e.g., Abbreviation Online [14, 15],  
AcroMed [6, 7]). 
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LocusLink, developed by National Center for Biotechnology Information (NCBI), 
provides detailed information about function and position of gene, some special fields 
of which are related with gene name such as: OFFICIAL SYSMBOL (the officially 
approved symbol for gene), OFFICAL_GENE_NAME (the official name of the 
gene), and ALIAS_SYMBOL (an alias that is sometimes used to refer to the gene) 
etc. [4]. 

euGenes, developed by Indiana University Biology Department, provides a com-
mon summary of gene and genomic information from eukaryotic organism databases, 
including gene symbol, gene full name, and gene product information etc. [8]. 

MeSH (Medical Subject Headings), the controlled vocabulary thesaurus of the 
National Library of Medicine (NLM), consists of 22,997 biomedical terms naming 
descriptors in a hierarchical structure conjunct with 83 topical qualifiers [10]. 

UMLS (Unified Medical Language System), developed by NLM, includes 
SPECIALIST lexicon, Semantic Network, and Metathesaurus three parts. Where 
Metathesaurus is built from the electronic version of many different thesauri, lists of 
controlled terms, and contains information about biomedical and health related con-
cepts, their various names, and the relationships among them [11]. 

Abbreviation Online, developed by Stanford University, uses statistical learning 
algorithm (logistic regression) to score abbreviation expansions based on their resem-
blance to a training set, and creates an online dictionary of abbreviations from 
MEDLINE [14, 15].  

AcroMed, developed by Brandeis University, uses regular expression algorithm to 
generate a database which contains 480,000 biomedical acronyms and the associated 
long forms extracted from MEDLINE abstracts [6]. 

In contrast with the popular databases, thesauruses, and extraction systems  
mentioned above, our work is to build a genomic glossary for the specific document 
collection rather than a global biomedical dictionary for any cases. We hypothesize 
author defines gene symbol in his/her article if its meaning is new in the literature, be-
fore it’s used widely in the rest part of the literature. We also hypothesize that the 
above definition can be reused by the other literatures in the same category. The two 
hypotheses are tested in the study of gene/protein term identification [16]. 

Another significant feature of our work is that the glossary generation is triggered 
by query, which is a thoroughly different workflow from traditional information ex-
traction systems, in which database technologies are employed to store the extracted 
knowledge and support the search function. The input to our system are a set of bio-
medical articles and one or more gene names from user, and the output glossary is 
able to interpret the confusing name appearing at the collection in its own language 
and provide the related linkage to this interpretation (e.g. ING1 (inhibitor of growth 1) 
11966686. Where, “inhibitor of growth 1” is the interpretation to ING1, and this 
glossary item is extracted from Doc11966686.).   

The rest of this paper is organized as follows: in Section 2, we review algorithms 
for biomedical terms extracted from unstructured files. In section 3, we present our 
extraction methods. Section 4 states the experimental settings and result analysis, in 
which we utilize TREC 2003 Genomics Track to evaluate our methods. Section 5 is 
the conclusions and future works. 
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2   Related Works 

Due to its importance, the understanding of gene name has been the focus of research 
for a long time. Previous works, introduced briefly in the last section, can be roughly 
divided into two groups: manual construction and automatic extraction. As our target 
is to extract glossary (i.e. the definition for the gene symbol) automatically, this re-
view section emphasizes the automatic extraction and matching algorithms, including 
rule-based, linguistic, statistical, machine learning, and hybrid approaches. 

Hisamitsu et al. (1998) extracted technical term and its definition though bi-gram sta-
tistic, selected phrases associated with parentheses (the parenthetical phrase and the 
outer phrase) co-occur more frequently than random firstly, and then they applied a 
set of rules to identify whether the parenthetical phrase was an explanation of the 
outer phrase. For example, a rule indicated that a phrase was an abbreviation of a full 
form if the letters of the phrase appeared in order in the full form. Their evaluation of 
this approach demonstrated 97% precision [17]. 

Pustejovsky et al. (2001) introduced the regular expression algorithm to extract acro-
nym form MEDLINE, and used the shallow parser technology to enhance the algo-
rithm [13]. Their evaluation on precision was 98%, but the performance on recall was 
not significant because of the strict regular expression limited. Another contribution 
was the presentation of POLYFIND algorithm, which solved the storage and index 
problems in the database caused by an acronym that has several possible long forms 
associated with it (named as Polynym). 

Chang et al. (2002) created a robust method for identifying biomedical abbreviation 
using supervised machine learning theory. They decomposed the problem into four 
components: scanning text for occurrences of possible abbreviations; aligning the 
candidates to the preceding text; converting the abbreviations and alignments into fea-
ture vector; scoring the feature vector using a statistical machine learning algorithm. 
AcroMed [6] was used as golden standard in their evaluation step, and they achieved 
80% precision and 83% recall [14]. 

Satou et al. (2004) gathered biomedical terms from different resources and presented 
dictionary building and matching approach [18]. Their matching algorithm succeeded 
in looking up generative biomedical terms and substrings surrounded by non-space 
characters with the help of meaningful segmentation. 

All the four methods contributed in the definition for domain-specific term, but the 
limitations might affect their use in the biomedical domain. Hisamitsu et al.’s  
algorithm depends on statistical significance of the two terms that are associated with 
parentheses, which leads to missing the terms that are newly introduced into the lit-
erature. In Pustejovsky et al.’s study, the strict regular expression rules do not apply to 
many biomedical terms. Chang et al.’s machine learning method relies on a large 
scale training set annotated manually. Satou et al.’s dictionary is built on the top of 
many biomedical resources and may fail to understand the terms that are not involved 
in the resources. 

In our methods, newly introduced gene name can get its proper definition from the 
latest publication, as our query-triggered glossary extraction depends on the document 
collection, i.e. document quantity and quality determine the glossary content.  
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Moreover, triggering term in the query acts as an anchor in the extraction procedure, 
which avoids a series of problems caused by term identification in the information ex-
traction systems. We introduce guidelines about genome nomenclature that are useful 
for applying computational approaches to generate genomic glossary [19-24]. Besides 
considering the above features, we also flexibly loose the rule restriction according to 
the configuration, taking gene E2F1 for example,  

At the strict level, it can be explained as: 

E2F1: E2F transcription factor 1.  

At the loose level, it can be explained as:  

E2F1: a transcription factor involved in both cell cycle progression and apoptosis. 

The detailed descriptions about how the extraction is triggered, how the nomencla-
ture guidelines are utilized, how the restriction is configured and the other methods 
involved in our system are discussed in the next section. 

3   Methods 

As our genomics glossary extraction is for specific document collection, and the novel 
idea of query trigger needs to frequent and flexible interaction with the document col-
lection. Thus, the management of document collection becomes an unavoidable prob-
lem in our glossary extraction system. We decompose the query-triggered genomic 
glossary extraction problem into two main components: (1) Document Indexing, (2) 
Glossary Extracting. 

Sentence Spliter

Document
Collection

Index Builder

Index

Doc Sen Term

Sen

Sen

Term

Term

Query Processor Query Runner

Query

Candidate
Sentences

Pattern Detector

Rule Matcher
Configure

Genomic
Glossary

Glossary Extracting Document Indexing
 

Fig. 1. System Architecture of Query-Triggered Genomic Glossary Extraction 
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Fig.1 shows the system architecture of query-triggered genomic glossary extrac-
tion. Document is split into meaningful unit, sentence, and then pushed into index, 
which is the foundation work in the workflow. The following workflow would be 
comprehensive through this scenario: user finds an unfamiliar gene name when he 
reads a biomedical book that is already included in the index, and he sends a query to 
our system. Then the system responds as follows: expand the query; retrieve the query 
and its expansions in the index; get the candidate sentences which contain  
query terms; recognize the sentences which satisfy certain patterns; match them with 
the rule set whose restriction level can be configurable; and finally return user the 
matching result (i.e. our genomic glossary items). The rest of this section focuses on 
discussing the key steps in our system architecture.  

3.1   Document Indexing 

Different from traditional IE systems which scan document collection one time and 
store the extracted information in database, our system is to extract a glossary tailed 
for document collection, and provide the explanation to the unpredictable query from 
reader. The simple I/O operations and string matching technologies are not competent 
any more when the document collection scale explodes rapidly and content updates 
frequently. We introduce the inverted index, a popular technology applied in search 
engine [25], to solve the document storage and match problem.  

Sentence is a more meaningful unit for term definition compared with passage and 
document, thus, before being pushed into the index, textual resource is split into sen-
tences while still keeping document information that could provide evidence and link-
age for the extracted glossary. In contrast with the classic inverted index, doc-term 
list, there is an additional level sen (short for sentence) in our index part (see Fig. 1).  

3.2   Query Processing 

In the context of biomedical articles, gene name may appear in an abundant number 
of lexical variants, the main reason of which is the different preferences of hy-
phenation, spacing and Greek letters. For example, the tropomyosin-alpha gene is 
referred in four different ways: tropomyosin alpha, tropomyosin 1, tropomyosin-1, 
tropomyosin1.  

This problem is solved by the query processor in our system. According to the 
rules (see Table 1.), it creates a list (lq) of possible variants (vq1, vq2, vq3…) for the trig-
gering query (tq) that contains at least one hyphen, digit, or Greek letter. 

Table 1. Sample Rules Used in Query Processor 

1. Hyphens are removed from the term. 

2. At every transition form alphabetic characters to digit or Greek letter, a hyphen is inserted. 

3. Digit is removed when they appear at the end of the term. 

4. Greek letters are translated to their numerical and Latin equivalents. 
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3.3   Pattern Detecting 

With the help of inverted index, we efficiently get the candidate sentences, each of 
which contains at least one tq or vqi in the lq, but not all these candidate sentences can 
provide the evidence for the tq’s definition. Therefore, the pattern detector is used to 
select the most possible sentences for term definition by some pattern limitations. 

Parenthesis Detection: The content in the parenthesis always explains and annotates 
the content before it, for example, ATF-2 (activating transcription factor 2). How-
ever, certain parentheses are not associated with reasonable definition, such as paren-
theses containing only numbers, numbers with percentage symbol, and certain  
keywords (e.g. fig, table, and PH). If it is detected as containing parenthesis within 
above features, sentence would be filtered out of the sentence set Spar. 

Position Detection: The tq or its lexical variant vqi appears at the head of one sen-
tence, in most cases it plays a subject role in the sentence (i.e. all the sentence content 
may encompass it). Taking gene name EAAT2 for instance, the sentence “EAAT2 is 
the major carrier of glutamate in the mammalian brain” is a good interpretation for it. 
Thus the position factor is also considered by the pattern detector, and the detected 
sentence set Spos is involved in our loose level glossary. 

3.4   Rule Matching  

Query term tq and its lexical variant vqi act as anchors in our system. They help us to 
find the candidate sentences from the huge documents firstly, and then select two sen-
tence sets, Spar and Spos, by the pattern detector. The rule-based algorithm for the  
anchor related glossary extraction from Spar is presented in this section.   

Sentence spar1 in Spar can be formalized as follow: 

PreComponent (MidComponent) PosComponent.  

Where, PreComponent, MidComponent, and PosComponent are three ordinal compo-
nents around the parentheses in spar1.  

ExGlossary (anchor
g
, s

par1
) { 

    if anchor
g
 ⊂ PreComponent { 

        def
g
′ = MidComponent; 

        Forward_Match (anchor
g
, def

g
′); 

    } 

    elsif anchor
g
 ⊂ MidComponent { 

        def
g
′ = PreComponent; 

        Backward_Match (anchor
g
, def

g
′); 

    } 
    Return (anchor

g
, def

g
); 

}  
 

Algorithm 1. Rule-based Genomic Glossary Extraction Algorithm 
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In Algorithm 1, gene name tq or its lexical variant vqi appearing at spar1is expressed 
as anchorg, and the definition for the gene (i.e. the item will be involved in the ge-
nomic glossary) is expressed as defg while the candidate definition, the uncertain one 
before the rule matching applied, is expressed as defg ′.   

The algorithm never considers the PosComponent, as the components before and 
after the left parenthesis construct the definition relationship. For different positions 
of anchorg, PreComponent and MidComponent, our algorithm adopts Forward_Match 
and Backward_Match strategy respectively, because the right boundary of PreCom-
ponent and the left boundary of MidComponent are fixed.  

Take one sentence of MEDLINE abstract (PMID = 12541321) for instance to  
explain the algorithm, “We also evaluated the expression of the CCR1 ligand macro-
phage inflammatory protein-1alpha (MIP-1alpha/CCL3).” If the anchorg is  
“macrophage inflammatory protein-1alpha”, the MidComponent, “MIP-1alpha/ 
CCL3”, becomes the definition candidate defg ′ for the anchorg, and then macrophage 
matches M, inflammatory matches I, protein matches P, and alpha matches alpha 
from left to right, naming Forward_Match. On the other hand, if the anchorg is “MIP-
1alpha”, the PreComponent, “We also evaluated the expression of the CCR1 ligand 
macrophage inflammatory protein-1alpha”, becomes the definition candidate defg ′ 
for the anchorg, and then alpha matches alpha, P matches protein, I matches inflam-
matory, and M matches macrophage from right to left, naming Backward_Match. No 
matter which cases above are processed by the algorithm, the pair “macrophage in-
flammatory protein-1alpha”-“MIP-1alpha” is returned as the result of ExGlossary. 

In order to illuminate the algorithm, the matching rule applied in the above exam-
ple is quite simple (i.e. matching the first letters of the words), however, much more 
rules guided by genomic nomenclature (see Table 2.) are designed in our system, such 
as (1) any number and special character (e.g. +, -, /) are ignored for matching; (2) 
match consecutive letters, e.g. ACO1, “aconitase 1”; (3) skip one word if matching 
the first letter of following word, e.g. TCP10L, “t-complex 10 mouse like”; (4) match 
a middle letter of a word if the first letter of the word is matched and the first letter of 
the following word is not, e.g. IgM, “Immunoglobulin M”. All the rules are applied 
iteratively until the components are completely matched. The matched pairs become 
the strict result of genomic glossary while the dis-matched sentences conjunct with 
Spos become the loose result.  

Table 2. Guidelines for Genome Nomenclature  

1. Where a complete alternative gene name is being included as part of the name, this should 
be in the parentheses [21]. 

2. Gene symbol should be short-form representation for the descriptive gene name [20, 21]. 

3. Initial character of gene symbol should always be a letter [19-24]. 

4. Gene symbol should not contain punctuation [20, 21].  

5. Greek symbols in gene name should be changed to their Latin alphabet [21]. 

6. Gene symbol should not contain “G” for gene [20]. 

7. Modifier of gene name should follow the main part of the name, separated by commas [21]. 

8. Gene name of other species should be in parentheses at the end [21]. 
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4   Experiment Settings and Result Analysis 

4.1   Experiment Settings 

In the genome nomenclature criteria, gene full name should be included in the ab-
stract of any relevant papers [19]. The abstracts of MEDLINE, a famous biomedical 
bibliographic resource which covers 4,800 worldwide leading journals on bio-
sciences [1], become the document collection in our experiment. We use LocusLink 
to simulate query sender in the experiment. The evaluation for the extracted glossary 
is through ad hoc retrieval task of Text REtrieval Conference (TREC) Genomics 
Track in year 2003 [26]. 

Topic of the ad hoc retrieval task can be described as: For gene X, find all 
MEDLINE references that focus on the basic biology of the gene or its protein prod-
ucts from the designated organism. The correct understanding of the gene X becomes 
a key point in this task.  

In the following experiment, gene X triggers the glossary extraction firstly, and 
then the generated glossary items together with the original topic are input into the 
search engine [27] to get the relevant document list. 50 batch topics in test data set 
and relevance judgments (called “qrels” in TREC jargon) for them are involved in our 
experiment, thanks to TREC release. 

Fig. 2. shows our genomic glossary evaluation through RECALL performance at 
each topic in TREC2003 ad hoc retrieval task. 

Recall = |Ra|/|R|   

Recall is the fraction of the relevant documents which has been retrieved [25]. 
Where, |R| is the number of relevant documents, and |Ra| is the number of relevant 
and retrieved documents. 

 

Fig. 2. Genomic Glossary Evaluation through TREC2003 Genomics Track Ad Hoc Task 
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4.2   Result Analysis 

In Fig. 2, “baseline”, “strict” and “loose” represent the retrieval results of the gene 
names in LocusLink (naming initialq), extracted glossary at strict level conjunct with 
initialq (naming Instrictq), and extracted glossary at loose level conjunct with initialq 
(naming Inlosseq) respectively. Query-triggered genomic glossary technology im-
proves the recall performance of IR system, especially at the point that initialq fails to 
hit any documents in the collection, taking topic 11 for example to explain how our 
methods succeed in breaking the bottleneck of such topic. Table 3. shows the gene 
names (the third column) and their name types (the second column) in the topic 11.  
None of the four names are mentioned in MEDLINE (4/1/2002 -- 4/1/2003), so topic 
11 gets 0 recall at baseline.  

Table 3. Topic 11 in the Test Topic Set of TREC2003 Genomics Track Ad Hoc Retrieval Task 

11 OFFICIAL_GENE_NAME tissue inhibitor of metalloproteinase 2 

11 OFFICIAL_SYMBOL TIMP2 

11 PREFERRED_PRODUCT tissue inhibitor of metalloproteinase 2 precursor 

     11 PRODUCT tissue inhibitor of metalloproteinase 2 precursor 

As certain rules in our query processor ignore numeric factor, “tissue inhibitor of 
metalloproteinase” becomes one variant of triggering query “tissue inhibitor of metal-
loproteinase 2” after query processing (see section 3.2); the following sentence is  
returned as candidate sentence “tissue inhibitor of metalloproteinase-2 (TIMP-2) in 
ectopic and eutopic endometrium from women with and without endometriosis 
throughout the menstrual cycle.” (PMID = 12372458); pattern detector selects the 
above sentence as one member of sentence set Spar (see section 3.3); in the ExGlossary 
algorithm, “tissue inhibitor of metalloproteinase” is the anchorg, and “TIMP-2” is 
mined out as defg (see section 3.4). This is one of effective procedures for topic 11, as 
“TIMP-2”is the common expression in document collection, and is used in all the 
relevant documents of this topic. After the strict-level glossary applied, the average 
recall of 50 topics improves to 83.20% from baseline 52%.  

The difference between the results of Instrictq and Inlosseq is not as significant as 
the one between baseline and Instrictq. Although the average recall of Inlosseq in-
creases to 90.15%, its performances at some topics are not better than Instrictq (e.g. 
topic 24, topic 35). The reason is that Inlosseq consists of all the terms in anchorg, Spar 
and Spos, and brings in so many noises that the relevant documents cannot rank into re-
trieved document set. For ranking algorithm and query term weighting strategy, they 
are the more complex problems in IR field [25]. In order to focus on the evaluation of 
extracted glossary, all above three retrieval results are based on the same ranking  
algorithm and term weighting strategy. 

From the above experiment settings and result analysis, we can conclude that our 
query-triggered genomics glossary improves the recall performance of information  
retrieval system in TREC2003 Genomics Track ad hoc retrieval task.  
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5   Conclusions and Future Works 

In this paper we present a novel framework to extract genomic glossary automatically, 
where a series of document indexing methods and rule-based algorithms are applied 
to support the query-triggered and document-centralized biomedical text mining. The 
evaluation trough TREC Genomics Track indicates our glossary’s contribution in IR 
task (83.20% recall at strict level, 90.15% recall at loose level). Our system may pro-
vide a useful supplement for the public genome resource (e.g. LocusLink, MeSH) to 
identify the new expressions of gene in the latest literature, and assist the manual 
work for curators in genomic field. 

In our future works, more computational linguistic techniques will be imported, 
especially at the steps of the pattern detecting and the loose-level result processing.  
Some helpless rules, which may lead to low system efficiency, are to be optimized in 
next phase. On the other hand, the glossary evaluation experiments will be enhanced, 
such as attempt to compare with other works in KDD Cup 2002 Task1: information 
extraction from biomedical article [29]. 
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Abstract. Extracellular plant proteins are involved in numerous pro-
cesses including nutrient acquisition, communication with other soil or-
ganisms, protection from pathogens, and resistance to disease and toxic
metals. Insofar as these proteins are strategically positioned to play a
role in resistance to environmental stress, biologists are interested in pro-
teomic tools in analyzing extracellular proteins. In this paper, we present
three methods using frequent subsequences of amino acids: one based on
support vector machines (SVM), one based on boosting and FSP, a new
frequent subsequence pattern method. We test our methods on a plant
dataset and the experimental results show that our methods perform
better than the existing approaches based on amino acid composition.

1 Introduction

Proteins are the molecules that accomplish most of the functions of the living
cell. All proteins are composed of linear sequences of smaller molecules called
amino acids. There are twenty naturally occurring amino acids. Long proteins
may contain a chain of as many as 4500 amino acids. Finding the proteins
that make up a creature and understanding their functions is the foundation
of explanation in molecular biology [11]. With the introduction of large-scale
sequencing, biologists have accumulated an immense volume of raw biological
sequences that are publicly available. In order to better understand the functions
and structures of these protein sequences, a vitally important problem facing the
biology community is to classify these sequences into different families based on
the properties of the sequences, such as functions, structures, etc.

Protein sub-cellular localization is a key functional characteristic of proteins.
In order to execute a common physiological function, proteins must be localized
in the same cellular compartment. Proteins may be localized at various loca-
tions within the cell or be transported to the extracellular space. The process
through which proteins are routed to their proper sub-cellular localizations is
called sub-cellular protein sorting. Protein sorting is the simplest in gram posi-
tive prokaryotes, where proteins are only directed to the cytoplasm, the plasma
membrane, the cell wall, or secreted to the extracellular space. Gram nega-
tive protein localization sites include the cytoplasm, the inner membrane, the
� Research funded in part by the Alberta Ingenuity Funds and NSERC Canada.
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periplasm, the outer membrane, and the extracellular space. Sub-cellular local-
izations in eukaryotic proteins are much more complex due to the presence of
membrane-bound organelles. The major location sites for eukaryotic proteins in-
clude the plasma membrane, the nucleus, the mitochondria, the peroxisome, the
endoplasmic reticulum, the Golgi apparatus, the lysosome, the endosome, and
others (such as chloroplasts, vacuoles, and the cell wall in plant cells).

The sub-cellular localization of a protein plays an important role with re-
gard to its function. Knowledge of sub-cellular localization can provide valuable
information concerning its possible functions. It can also help in analyzing and
annotating sequences of hypothetical or known gene products. In addition, it can
influence the design of experimental strategies for functional characterization [5].

Since the number of collected sequences has been rapidly increasing, it is time
consuming and costly to approach this problem of predicting the sub-cellular
localization of a protein entirely by performing various biological experimental
tests. In view of this, it is highly desirable to develop some algorithms to rapidly
predict the sub-cellular localizations of proteins.

Herein, we are particularly interested in identifying those proteins that are
secreted to the extracellular environment (called extracellular proteins), versus
proteins localized at various locations within the cell (called intracellular pro-
teins) in plants. Extracellular plant proteins are involved in numerous processes
including nutrient acquisition, communication with other soil organisms, protec-
tion from pathogens, and resistance to disease and toxic metals. Insofar as these
proteins are strategically positioned to play a role in resistance to environmental
stress, biologists are interested in proteomic tools in analyzing them [26].

A number of methods have been developed in the bioinformatics community
for predicting protein sub-cellular localizations. They can be classified into three
major approaches based on the features used in the learning algorithms. The
first approach is based on “sorting signals”, which are short subsequences of
approximately 3 to 70 amino acids. For example, SignalP [17, 18] and TargetP
[6] use neural networks to identify the sorting signals. The accuracy of Sig-
nalP is 68% for human proteins, 70.2% in Eukaryote, 83.7% in E.coli, 79.3% in
Gram-negative bacteria and 67.9% in Gram-positive bacteria. TargetP achieves
an accuracy of 85% in plants and 90% in non-plant proteins. The second ap-
proach is based the amino acid composition. The amino acid composition of a
protein sequence refers to the relative frequencies of 20 different amino acids.
Each protein is represented by a histogram with 20 bins, regardless of the length
of the protein. NNPSL [19] uses neural network and SubLoc [10] uses support
vector machines(SVM) to learn the predictors based on amino acid composi-
tion. The accuracy of NNPSL is 66% in Eukaryotes excluding plants, and 81%
in prokaryotes. The accuracy of SubLoc is 91.4% in prokaryotes and 79.4%
on eukaryotes. The third approach, e.g. LOCKey [15] and PA-sub [14], uses
the textual information associated with a protein (available in Swiss-Prot [3])
to learn the predictor. Some tools (e.g. PSORT [16]) take an integrative ap-
proach by combining several different methods. LOCKey achieves an accuracy
of 87% on their test data extracted from Swiss-Prot. PA-sub achieves an overall
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accuracy of about 98% in all of their datasets (including animal, archea, fungi,
plant, Gram-positive bacteria and Gram-negative bacteria).

Recently, She et al. [22] proposed some methods for outer membrane protein
classification based on frequent subsequences. Their results have shown that
frequent-subsequence-based methods perform better than other methods in the
biological domain using precision as a measure. In this paper, we use similar
ideas for the problem of extracellular plant protein prediction.

In our work, we use support vector machines as well as boosting using fre-
quent subsequences of amino acids, then combine them with amino acid com-
position of proteins to improve accuracy. We also introduce a promising new
approach FSP specifically designed for frequent subsequences.

2 Predicting Extracellular Proteins

While modeling proteins with histograms representing the amino acid composi-
tion has been shown successful [19, 10, 2, 8], we found that the amino acid com-
position loses discriminant power for plant proteins. Instead we model a protein
by a set of frequent subsequences it contains. Our hypothesis is that frequent
subsequences of amino acids are better descriptors to discriminate between ex-
tracellular and intracellular plant proteins. In this section, after introducing the
features used in the training algorithms, we introduce three different methods
for extracellular plant protein prediction.

2.1 Feature Extraction

We use frequent subsequences as the features for the learning algorithms. A
frequent subsequence is a subsequence made up of consecutive amino acids that
occurs in more than a certain fraction (MinSup) of extracellular proteins. The
reason we choose frequent subsequences is based on the following observations:

– Subsequences that appear frequently in extracellular proteins and rarely ap-
pear in intracellular proteins have very good discriminative power for iden-
tifying extracellular proteins and can be of great interest to biologists.

– It has been known that common subsequences among related proteins may
perform similar functions via related biochemical mechanisms [7].

– Frequent subsequences capture the local similarity that may relate to im-
portant functional or structural information of extracellular proteins.

There are algorithms for finding frequent subsequences in a set of sequences
using generalized suffix trees (GST) [25]. A GST is a trie-like structure designed
for compactly representing a set of strings. Each suffix of the string is represented
by a leaf in the GST. Each leaf is associated with an index i. The edges are
labeled with character strings such that the concatenation of the edge labels on
the path from the root to the leaf with index i is a suffix of the ith string in
the set. There are algorithms that can construct the GST for a set of strings
in linear time [9]. After a GST is constructed, it is traversed in order to find
frequent subsequences.
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2.2 SVM Method

The first method we use is based on support vector machines (SVM) [24].
SVM is well founded theoretically because it is based on well developed sta-
tistical learning theory. It has also been shown to be very effective in real-world
applications.

In order to use SVM, the input data have to be in the form of vectors. Each
protein sequence is transformed into an n-dimensional vector x = (a1, a2, ..., an),
where n is the number of frequent subsequences found from extracellular pro-
teins, and aj(1 ≤ j ≤ n) is the feature corresponding to the ith subsequence. A
binary representation is used. If the ith subsequence appears in protein sequence
x, the value of aj is set to 1. Otherwise, it is set to 0. For the class label, +1 is
used to indicate extracellular proteins and -1 for intracellular proteins.

We can train the SVM using different kernel functions. A kernel function Φ(x)
maps the input vector x into a higher dimensional space. Nonlinear separators
for the original data can be found by a linear separator in this higher dimensional
space. Classical kernel functions include:
Linear Kernel Function: K(xi, x) = xi ·x; Polynomial Kernel Function: K(xi, x)
= (xi ·x+1)d; and Radial Basic Function(RBF): K(xi, x) = exp(−γ ‖ xi−x ‖2).

2.3 Boosting Method

Boosting is a meta-learning method that has a theoretically justified ability to
improve the performance of any weak classifier. A weak classifier is an algorithm
that, given ε, δ > 0 and access to random examples, can achieve at least slightly
better error rate ε than random guessing (ε > 1/2 − γ, where γ > 0), with a
probability (1−δ). The purpose of boosting is to build a highly accurate classifier
by combining many weak or base hypotheses, each of the weak hypothesis may
be only moderately accurate. Various different boosting algorithms have been
proposed in the literature [4, 20, 23].

Boosting algorithms work iteratively. During each iteration, a classifier is
learned based on a different weighted distribution of the training examples. The
main intuition behind boosting algorithms is to increase the weights of the in-
correctly classified examples and decrease the weights of the correctly classified
examples. This forces the learning algorithm to focus on those examples that are
not correctly classified in the next iteration. The algorithm usually stops after a
pre-specified number of iterations, or it can stop when some measurement of the
quality of the classifier based on certain measurement (such as error rate) starts
to deteriorate. The set of classifiers obtained after these iterations are combined
together for the final prediction of unseen examples.

In our application of extracellular protein prediction, we use AdaBoost [20]
with simple rule-based classifiers as the weak hypotheses. Every rule is a simple
check for the presence or absence of a frequent subsequence in a protein pri-
mary sequence. Based only on the outcome of this test, the weak hypothesis
outputs the prediction and the confidence that each label (“extracellular” or
“intracellular”) is associated with the protein sequence.
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If we denote the possible class label for a protein sequence x by l and define
a ∈ x to represent the fact that subsequence a appears in protein sequence x,
the weak hypothesis corresponding to this subsequence has the following form:

h(x, l) =
{

c0l if a∈ x
c1l if a/∈ x

where the cjl are real numbers. The weak learner searches all possible frequent
subsequences. For each subsequence, it calculates the values cjl and assigns a
score. Once all the subsequences are searched, the weak hypothesis with the
lowest score is returned by the weak learner. In our case, the score is an exact
calculation of Zt (refer to [20] for details). The score is calculated as follows
(refer to [21] for details):

Let X0 = {x : w /∈ x} and X1 = {x : w ∈ x}. For j ∈ {0, 1} and for
b ∈ {−1, +1}, we calculate the following based on the current distribution Dt:

W jl
b =

m∑
i=1

Dt(i, l){xi ∈ Xj ∧ Yi[l] = b}

Zt is minimized for a particular term by choosing cjl = 1
2 ln(

W jl
+1

W jl
−1

) and by

setting αt=1. These settings imply that

Zt = 2
∑

j∈{0,1}

∑
l∈Y

√
W jl

+1W
jl
−1

After all frequent subsequences are searched, the weak learner returns the one
for which the value of Zt is the smallest.

2.4 Frequent Subsequence Pattern (FSP) Method

She et al. proposed a rule-based classification based on frequent patterns, which
have the form ∗X1 ∗ X2 ∗ ..., where X1, X2, ... are frequent subsequences made
up of consecutive amino acids, and “*” is a variable-length-don’t-care (VLDC)
that can substitute for zero or more letters when matching the pattern against
a protein sequence [22]. Their method finds a set of frequent patterns that dis-
criminate outer membrane proteins (OMP) from non-OMPs. In the classification
stage, if a protein matches one of the frequent patterns, it is classified as OMP.
Otherwise it is classified as non-OMP. We adopt a similar idea in our method,
but with the following modification.

Consider a pattern P=∗X1 ∗ X2∗ that appears in two different sequences S1
and S2 such that X1 and X2 are close to each other in S1 while they are too
far apart in S2. Intuitively, the match in S1 is more likely to be biologically
significant. In our algorithm, we introduce another parameter called MaxGap.
When matching a pattern against a protein sequence, if the distance (in terms
of number of amino acids) of two adjacent subsequences are too far apart, we
do not consider it to be a match. For example, if MaxGap is set to be 3, the
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pattern “*ABC*DEF*” does not match the sequence “ABCMNOPQDEF”, since
the gap between subsequence “ABC” and “DEF” is 5 (see Figure 1(a)). However
the pattern “*ABC*DEF*” matches the sequence “ABCABCPQDEF”, since we
can find a way to align them, so that the gap between “ABC” and “DEF” is 2. In
this paper, we call the pattern with MaxGap to be frequent subsequence pattern,
and the pattern without MaxGap to be frequent pattern.

Algorithm 1. FSP: Algorithm for Finding Patterns
Input: Training set D = P ∪N . (P and N are the sets of extracellular and intracellular proteins)

Output: R a set of patterns in the format of ∗X1 ∗X2 ∗ ... for predicting extracellular proteins

Parameters: α: rate of weight decrease; δ: threshold total weight; min Znumber: minimum

acceptable Z-number; MaxGap: maximum gap between two subsequences.

Method:
set the weight of every example in P to 1
pattern set R ← ∅
totalWeight ← TotalWeight(P )
while totalWeight > δ · totalWeight do

N
′ ← N, P

′ ← P
pattern r ← empty rule
while true do

Choose the subsequence p with the largest Z-number, according to N
′

and P
′

if Z number(p) < min Znumber then
break

end if
append p to r
for each example t in P

′ ∪ N
′
do

if not Match(t, r, MaxGap) then
remove t from P

′ ∪ N
′

end if
end for

end while
R ← R ∪ {r}
for each example t in P do

if Match(t, r, MaxGap) then
t.weight ← α · t.weight

end if
end for
totalWeight ← TotalWeight(P )

end while
return R

She et al. use an exhaustive search to build frequent patterns to identify outer
membrane proteins by concatenating two or more frequent subsequences [22].
However, since there could be thousands of subsequences found in the training
set, an exhaustive search produces an explosive number of candidate patterns. To
deal with this problem, we exploit a greedy algorithm to find those patterns. We
search for the current best rule and reduce the weights of the positive examples
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that are covered by this rule, until the total weight of the positive examples are
less than a certain threshold (Algorithm 1). The procedure Match(t, r, MaxGap)
in Algorithm 1 is implemented by enumerating all the possible alignment of the
subsequences in the pattern r to the sequence t. The pattern r is considered to
“match” sequence t, if there is one possible alignment, such that the distances
between two adjacent subsequences are all less than MaxGap.

ABCMNOPQDEF

ABC              DEF

ABCABCPQDEF

        ABC     DEF

(a) (b)

Fig. 1. Matching pattern against sequence

The Z-number in Algorithm 1 is calculated as follows. Given a rule R and
sR denotes its support, let aC denote the mean of the target class C, defined
as aC = |SC |/|S|, where S is the current training set and SC is the subset
of S where C is the class label. Let σC denote the standard deviation of the
target class C. In the binary classification problem, it is calculated as σC =√

aC(1 − aC). Using these notions, Z-number is defined as ZR =
√

sR(aR −
aC)/σC . The Z-number measures how well a rule R discriminates examples of
class C [13]. It is similar to the z-test or t-test in statistics. A rule with high
positive Z-number predicts the presence of C with high confidence. A rule with
high negative Z-number predicts absence of C with high confidence. A rule with
Z-number close to zero does not have much power of discriminating examples of
class C.

After the set of patterns are generated, we filter them in order to keep those
patterns with good predictive power. Only those patterns with support greater
than a threshold MinSup and confidence greater than MinConf are kept for
predicting unseen protein examples. The prediction process is relatively easy.
Given an unseen example t, every pattern r in the pattern set is tested. If there
exist a pattern r that matches t, t is predicted to be an extracellular protein,
otherwise it is predicted to be an intracellular protein.

3 Experimental Results

Our hypothesis is that frequent subsequences of amino acids are better dis-
criminant than amino acid composition for distinguishing between intracellu-
lar and extracellular plant proteins. We compare our methods including SVM
based on frequent sequences, boosting based on frequent subsequence, and our
frequent subsequence pattern method (FSP) with SVM based on amino acid
composition and boosting based on amino acid composition. We also investigate
the effect of combining subsequences and amino acid composition in the same
classifier.
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3.1 Dataset and Evaluation

We tested the performance of our methods on a plant protein dataset that we
received from the Proteome Analyst project [14] at the University of Alberta.
This dataset contains 3293 proteins, among which 171 are extracellular proteins.

We performed 5-fold cross validation, i.e., each run takes one of the 5 folds
as the test set and the remaining 4 folds as the training set. To ensure fair
comparisons, all the methods are evaluated using the same folding.

The performance of a classification algorithm is usually evaluated by its over-
all accuracy. However, in our application, overall accuracy is not a good evalua-
tion metric since in our dataset, only about 5% of the proteins are extracellular
proteins. A high accuracy (95%) can easily be achieved by classifying every pro-
tein to be intracellular. Instead, we choose to use precision, recall and F-measure
with respect to the rare class (extracellular proteins) as our evaluation metrics.
They are based on the confusion matrix shown in Table 1. Using the notions in
Table 1, precision (P ) and recall (R) of extracellular class can be defined as:

P =
TP

TP + FP
, R =

TP

TP + FN

Table 1. Confusion Matrix

Actual Extracellular Actual Intracellular
Predicted as Extracellular TP FP
Predicted as Intracellular FN TN

The F-measure is a harmonic average of precision and recall: F = 2PR
P+R .

For all the experiments, the subsequences are obtained by setting the min-
imum support threshold to be 5%. The numbers of subsequences in each fold
are: 2658, 2605, 2532, 2817, 2722 for folds 1 to 5 respectively.

3.2 Experimental Result of SVM

We used the SVMlight implementation [12] since it is well-known and has been
used extensively in previous research. We tried with three different kernels, in-
cluding the linear kernel, the polynomial kernel with degree of 2 and the radial
basis function kernel with γ=0.005. For each kernel, we tried different values
for C (the regularization parameter that controls the trade-off between mar-
gin and misclassification error). The best result (in terms of F-measure) using
frequent subsequences is 0.804 with a linear kernel. We compared our method
with SubLoc [10]. SubLoc uses SVM with amino acid composition as its features.
The authors show that SubLoc performs better in terms of accuracy compared
with other methods based on amino acid composition. It also performs better
than methods based on N-terminal signals. SubLoc is not specifically designed
for predicting extracellular proteins, but since its implementation is based on
SVMlight, we re-implemented it with SVMlight and tested it on our dataset.
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We tried the same parameter settings as we did in SVM with subsequences.
The best result obtained is only 0.522 with a polynomial kernel (d=2) and
C=1000.

3.3 Experimental Result of Boosting

In the experiments with boosting, we chose the number of iterations to be 500,
1000 and 2000. The results show that the boosting algorithm is robust with re-
spect to the number of iterations. The best result obtained by boosting using
frequent subsequences is 0.729 with 1000 iterations. For the purpose of com-
parison, we also tried AdaBoost based on amino acid composition. Since the
attributes are continuous values in this case, the weak hypothesis used is a sin-
gle test of whether the composition of an amino acid is above or below some
threshold (see [21] for details). The best result obtained is a mediocre 0.574
with 1000 iterations.

3.4 Experimental Result of the FSP Method

For the experiments using the frequent subsequence pattern (FSP) method, there
are quite a few parameters to be tuned. In order to tune those parameters, we
took a portion of the training examples and tried our algorithm with different
parameter settings, then tested the learned model on another portion of the
examples. Through trial and error, we identified the following parameter setting:
MinLen set to 3, min gain to 0.1, δ to 0.03 and α to 0.8. The MinSup is set to
5%, MinConf to 80%, and MaxGap to 300. We obtained a precision of 0.765,
a recall of 0.614 and an F-measure of 0.681.

Even though SVM based on frequent subsequences achieves the best experi-
mental result, there are some advantages in using the FSP method. The reason is
that the decision functions learned by SVM algorithms are difficult for people to
understand. The discovered hyperplane is difficult to manipulate. However, the
decision rules found by the FSP method can be easily interpreted and modified
by human experts. Figure 2 shows some examples of the rules found by the FSP
method. Biologists can easily read these rules and determine whether they are bi-
ologically meaningful. They can also incorporate their biological knowledge and
modify the patterns, e.g., by adding or removing subsequences in the patterns,
to get even better classification models. This study is currently in progress.

IF (sequence contains *CKN*CGPGHGIS*) THEN (extracellular)
IF (sequence contains *YWGQNG*EIN*) THEN (extracellular)
IF (sequence contains *QVY*AGH*NVT*) THEN (extracellular)
...
ELSE (intracellular)

Fig. 2. Examples of patterns found by the FSP method
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3.5 Combining Frequent Subsequences and Amino Acid
Composition

It is clear that the methods based on frequent subsequences perform better than
those based on amino acid composition. However, we can still take advantage
of the information represented in the amino acid composition histograms by
combining these two features. We investigated this possibility. Interestingly, we
found that SVM does not improve at all. The result shows that there is no
obvious benefits of combined features for SVM. In other words, SVM could not
take advantage of the additional information. In the case of the RBF kernel,
SVM based on combined features deteriorated. The additional data (amino acid
composition) created noise.

Contrary to SVM, the performance of boosting (measured by F-measure) can
be improved significantly by combining frequent subsequences and amino acid
composition. As can be seen in Table 2 and Table 3 Boosting using combined
features gives a better result than the best result of SVM with frequent subse-
quences reaching 0.831. Boosting better exploits this additional data regarding
the amino acid composition when added to the frequent subsequences.

Table 2. AdaBoost classification with combined features

Number of iterations Recall Precision F-measure
500 0.685 0.967 0.802
1000 0.717 0.989 0.831
2000 0.708 0.989 0.826

Table 3. Comparison of AdaBoost based on different features

Number of iterations Combined feature Subsequence Composition
500 0.802 0.714 0.562
1000 0.831 0.729 0.574
2000 0.826 0.726 0.548

Since amino acid composition is represented by fractional numbers (i.e. the
histogram), there is no easy way to merge frequent subsequences and amino
acid composition in the FSP method. Thus, we did not combine amino acid
compositions in our FSP algorithm. However, a new model to represent this
information is worth investigating.

For cross comparison, we chose the best (in terms of F-measure) result gener-
ated by each algorithm (i.e., 0.804 for SVM with subsequences, 0.729 for boost-
ing with subsequences, 0.522 for SVM with amino acid composition, 0.574 for
boosting with amino acid composition). The comparison of different algorithms
is shown in Figure 3. Our methods based on frequent subsequences are better
than methods based on amino acid composition. In particular, Boosting with a
combination of frequent subsequences and amino acid composition performs the
best among the different approaches reaching an F-measure of 0.831.
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Fig. 3. F-measures of different algorithms

4 Conclusion and Future Work

We present in this paper several methods for identifying extracellular plant pro-
teins using frequent amino acid subsequences. Our experimental results show
that our methods perform better than amino acid composition-based methods.
The best result is actually achieved by combining frequent amino acid sub-
sequences and amino acid composition using Boosting. Combining these two
features is not always beneficial. It was indeed detrimental in the case of SVM.

Even though the experimental results show SVM and boosting based on
frequent subsequences as being the best approaches, there are advantages in
using our new FSP method. The main reason being that contrary to SVM for
example, the decision functions of the FSP method are easily readable rules that
can be easily understood, interpreted and edited by human experts. Moreover,
FSP is extendable. While it can not accommodate amino acid composition for
the moment, additional information such as location of frequent subsequences,
and constraints on their sizes could be combined in the algorithm.

There are a number of directions for possible future research. First of all, we
only use the protein primary sequences for training the predictor of extracellular
proteins. If additional properties of proteins (e.g., secondary structures, func-
tions) are available, future research can take these characteristics into account
to make a more accurate prediction.

With respect to frequent subsequences of amino acid, one important fea-
ture is the location of the subsequence within the protein. Biologists believe
that the position of a frequent subsequence, in the beginning, the end, or other,
within the protein can provide some indication regarding the protein itself. We
are currently investigating the combination of frequent subsequences, amino
acid composition, and the relative subsequence positions to build a more ro-
bust classifier. In particular, we are dividing a protein sequence into percentiles
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(50%, 25%, and 10%) and labeling the relative position of a frequent subsequence
by the portion in the protein where the subsequence starts. One good model that
lends itself to this type of combinations is the associative classifier [1]. Based on
associations rules, classification rules can be learned from proteins modeled into
transactions of features. These rules are also easily understood and potentially
modifiable by human experts in include additional domain knowledge.
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Abstract. Clustering is an important technique in microarray data
analysis, and mining three-dimensional (3D) clusters in gene-sample-time
(simply GST) microarray data is emerging as a hot research topic in this
area. A 3D cluster consists of a subset of genes that are coherent on a
subset of samples along a segment of time series. This kind of coherent
clusters may contain information for the users to identify useful pheno-
types, potential genes related to these phenotypes and their expression
rules. TRICLUSTER is the state-of-the-art 3D clustering algorithm for
GST microarray data. In this paper, we propose a new algorithm to
mine 3D clusters over GST microarray data. We term the new algo-
rithm gTRICLUSTER because it is based on a more general 3D cluster
model than the one that TRICLUSTER is based on. gTRICLUSTER
can find more biologically meaningful coherent gene clusters than TRI-
CLUSTER can do. It also outperforms TRICLUSTER in robustness to
noise. Experimental results on a real-world microarray dataset validate
the effectiveness of the proposed new algorithm.

1 Introduction

Microarray technology can measure the expression level of a large number of
genes interesting to the biologists, within a number of different experimental
conditions. These conditions may be different time points, different environ-
mental conditions, and different experimental samples. The data output by this
technology is called gene expression data. A number of important bioinformatics
and biomedical research problems are based on the analysis of gene expression
data. It is an interesting and challenging task to efficiently and effectively mining
meaningful clusters in gene expression data.
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Up to date, a number of clustering algorithms for microarray data analysis
have been developed [1], [2], [3], [4], [5], [6], in which most of the early devel-
oped clustering algorithms work in the full dimensional space [5]. However, in
many applications, subspace clusters are more useful and meaningful than full
space clusters. Biclustering algorithms [1], [6] or coclustering algorithms [7] were
proposed to find groups of genes and conditions. Specifically, this kind of algo-
rithms mine genes clusters defined with respect to a subset of the conditions, or
conditions clusters defined with respect to a subset of the genes.

Nowadays, a newly developed microarray technology can monitor the expres-
sion levels of a set of genes under a set of samples during a series of time points.
Data generated by this technology is called gene-sample-time microarray data
(GST data for short) or three dimensional microarray data [2]. To exploit the
power of GST data, some pioneering work on GST data clustering have been
reported [2], [3].

TRICLUSTER is the first and the state-of-the-art 3D clustering algorithm
over GST data. It mines the maximal 3D clusters (or triclusters) satisfying the
following homogeneity criterion: any 2 × 2 submatrix of a tricluster must obey
a constant multiplicative or additive relationship (or symmetry property in [3]).
However, such a strict constraint considerably limits the capability of TRICLUS-
TER to find some useful patterns. Certainly, TRICLUSTER allows a certain
deviation from this strict constraint, and the deviation degree is determined by
the parameter ε. In practice, the allowed values of ε are very small (usually
ε=0.003 in [3]), which still cannot prevent TRICLUSTER from missing some
important cluster patterns hidden in the data. Let us take the data illustrated
in Fig.1 as an example to demonstrate the weakness of TRICLUSTER caused
by the imposed symmetry property.

Fig. 1 shows a set of synthetic data indicating the expression level profiles of
one gene under two samples over six time points. Though the absolute values of
these two profiles are quite different, to a biologist, the overall trends of these
two profiles are highly consistent, which may mean that these two samples are
biologically associated. However, to capture this kind of patterns, the parameter

Fig. 1. An example to illustrate TRICLUSTER’s weakness
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ε of TRICLUSTER has to be 3.33, which is not only difficult for the users to
select exactly such a value in advance, but also not allowed by TRICLUSTER
(reminding in TRICLUSTER the parameter ε is usually less than 0.01).

Considering the weakness of TRICLUSTER, in this paper, we propose a new
and effective deterministic 3D clustering algorithm, which is called gTRICLUS-
TER. Similar to TRICLUSTER, gTRICLUSETR also mines triclusters, but it
is based on a more general tricluster model. In gTRICLUSTER, we give up
the symmetry property imposed on TRICLUSTER, and use the Spearman rank
correlation (SRC) as the basic similarity metric to evaluate the local similar-
ity of two expression level profiles. This enables our approach to capture more
cluster patterns that may be omitted by TRICLUSTER, and be more robust
to noise than TRICLUSTER. Experiments on a real-world dataset validate the
effectiveness of gTRICLUSTER.

Major contributions of this paper are as follows:

– we present a new 3D cluster model over GST microarray data. The new
model avoids the symmetry property of TRICLUSTER, and is consistent
with biological observation.

– we develop a new algorithm named gTRICLUSTER to mine effectively 3D
cluster, based on the new cluster model mentioned above.

– we conduct experiments on a real-world data set to validate the effectiveness
of the proposed algorithm.

The rest of the paper is organized as follows. Section 2 describes related work.
Section 3 defines the problem. Section 4 presents the gTRICLUSTER algorithm.
Section 5 gives experimental results. Section 6 concludes this paper.

2 Related Work

Previous work related to this research includes various algorithms of biclustering
(or coclustering) [1], subspace clustering, project clustering on microarary data,
and some pioneering work on GST data clustering [2], [3].

Cheng and Church first proposed the biclustering model [1]. The clusters
are mined according to coherent gene and condition simultaneously. Bicluster-
ing model has been proved to be a NP-hard problem. Later, a number of al-
gorithms are proposed to efficiently find biclusters based on different heuristic
search schemes [4].

J. Liu, et al. [8] proposed OP-Cluster model to mine clusters that share sim-
ilar tendency, and utilized prefix-tree structure to exhaustively enumerate all
possibly patterns.

D. Jiang, et al. [2] first proposed a clustering technique applied to GST mi-
croarray data. They focused on mining the maximal coherent gene clusters. How-
ever, the cluster model is defined on global time series, i.e., the gene and sample
dimensions.

Recently, Zhao and Zaki [3] presented the first and the state-of-the-art 3D
clustering algorithm on GST microarray data, which is called TRICLUSTER.
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They sliced the original GST microarray data along the time dimension to get a
series gene×sample tables (each time point corresponds to a gene×sample table).
By utilizing the imposed symmetry property in matrix computation, cost search
on gene dimension can be converted to search on sample dimension. For each time
point, i.e., a gene×sample table, TRICLUSTER constructs a range multigraph to
record all similar value ranges between any two sample columns. Then it searches
for constrained maximal cliques in this multigraph to generate a set of biclusters
for this time point. After all time points are processed, TRICLUSTER advances
to mine the 3D clusters (triclusters) by merging the biclusters of different time
points to generate the maximal cliques.

Our paper also deals with triclusters mining. Different from TRICLUSTER,
1) we use a more general 3D cluster model. Concretely, we release the sym-
metry constraint imposed on TRICLUSTER, which enables our algorithm to
mine some biologically useful patterns that TRICLUSTER may omit; 2) we use
Spearman rank correlation (SRC) to evaluate the local similarity of arbitrary
two expression level profiles, which makes our algorithm be more robust to noise
than TRICLUSTER; 3) we use set enumeration tree to find biclusters in sample
× time matrices, and merge the biclusters to generate the maximal cliques by
inverted list, while TRICLUSTER uses graph-based method to generate biclus-
ters in the gene × sample tables and obtain the triclusters eventually by merging
the biclusters.

3 Problem Statement

Given a set of n genes G = {g0, g1, . . . , gn−1}, a set of m biological samples
S = {s0, s1, . . . , sm−1} and a series of l time points T = {t0, t1, . . . , tl−1}, a
GST microarray dataset is a real-valued three-dimensional n × m × l matrix,
D = G × S × T = {dijk}. Each cell dijk represents the expression level of gene
gi in sample sj at time tk.

In this paper, a GST data set is viewed as a two-dimensional n × m matrix,
in which each cell mij represents the expression level of gene gi under samples
sj during the whole time series, i.e., a real value vector. While in [3], the GST
three-dimensional matrix is partitioned into a series of two-dimensional tables,
each of which represents the expression level of the whole gene set on the whole
sample set at a concrete time point.

Some existing work on GST data clustering has investigated how to find those
gene that are coherent on a subset of the samples during the whole time series [2].
A basic biological observation is: the genes that are biologically associated may
behave in similar expression patterns only over a segment of the time series, and
beyond this time range their expression patterns could be completely irrelevant.
Here, we aim to find those genes coherent on a subset of the samples within a
segment of the time series.

Usually, the users of microarray data are more concerned about the qualitative
behavior (overall trend of the expression levels) rather than the absolute values.
Here, a crucial issue is how to choose a proper metric to accurately evaluate the
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similarity between two arbitrary expression level profiles, and the metric should
be robust to noise, data shifting and scaling. We will give our similarity metric
in next section.

Definition 1. Given a gene gi, for any pair of samples sj1, sj2 ∈ S (S is a
subset of the whole samples set), denote the similarity between sj1 and sj2 as
Sim(mi,j1, mi,j2). We say gene gi is coherent across the subset of samples S
during the time series segment Ti if the following two conditions hold.
1) Sim(mi,j1, mi,j2) ≥ δ, where δ is the minimum similarity threshold predefined
by the users, and
2) |Ti| ≥ mint, here |Ti| is the length of the time series segment Ti, mint is the
minimum length of time series segment, which is also pre-specified by the users.

Definition 2. For a subset of genes G with size not smaller than the minimum
gene size threshold (denoted ming) and a subset of samples S with size not
smaller than the minimum sample size threshold (denoted mins), if every gene
gi ∈ G is coherent across the samples in S during the time series segment Ti,
and T =

⋂
i=1∼|G| Ti, |T | ≥ mint, then (G × S × T ) is a coherent 3D cluster. In

practice, we specify that a coherent 3D cluster must contain at least two genes
and two sample under two time points.

Definition 3. A coherent three-dimensional cluster G × S is maximal if there
exists not any other coherent three-dimensional cluster G′×S′ such that G ⊆ G′

and S ⊆ S′.

Definition 4. Given a GST microarray matrix M, and pre-specified parameters
δ, mins, mins and mint, the 3D cluster (or tricluster) mining problem with M
is to find all the maximal coherent 3D clusters in M.

4 gTRICLUSTER: A New 3D Clustering Algorithm over
GST Microarray Data

In this Section, we will first give the similarity metric for gene expression level
profiles, then describe the algorithm to finding biclusters in sample × time ma-
trices, and finally describe the process to mine triclusters by merging biclusters
on the gene dimension of GST data.

4.1 Similarity Metric

To better capture the local similarity of two profiles X and Y of one gene on
two samples, we define the similarity of X and Y , denoted Sim(X, Y ), as the
Simk(X, Y ) that satisfies the following two conditions: 1) Simk(X, Y ) ≥ δ (δ is
defined in last section), k is the length of the time series segment in which the
similarity is computed; 2) there is no any other time series segment of length
k′ > k, having Simk′(X, Y ) ≥ δ. That is, the similarity of two profiles is de-
termined by the longest time segment of these two profiles, which satisfies the
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basic similarity restriction (condition 1 above). Concretely, Simk(X, Y ) is given
as follows:

max
1≤i≤n−k+1

S(X [i, i + k − 1], Y [i, i + k − 1]). (1)

Here, S is a basic similarity measure. We choose the Spearman rank correlation
(SRC) as the basic similarity measurement. The SRC between two profiles X
and Y is evaluated as follows:

SRC(X, Y ) = 1 − 6
n(n2 − 1)

n∑
i=1

(rX(xi) − rY (yi))2 (2)

where rX(xi) is the rank of xi in the profile (x1, . . . , xn): rX(xi) = k ⇔ |{j|xj <
xi}| = k − 1.

To demonstrate the advantage of SRC, let us go back to Fig.1, in which there
are two synthetic expression level profiles with six time points. By using SRC,
their similarity is 0.94, while using the Pearson correlation their similarity is 0.61.
As we mentioned in the introduction section, by observation these two profiles
show similar trend pattern, while TRICLUSTER cannot find such pattern.

4.2 Mining the Maximal Coherent Sample Subsets

To search a maximal coherent 3D cluster, the first step we take is to identify
the maximal coherent samples subset for each gene. Given a gene gk, a maximal
coherent subset of samples S satisfies the following conditions: (1) |S| ≥ mins;
(2) gk is coherent on S according to Definition 1; and (3) gk is not coherent on
any superset of S. Certainly, a gene could have more than one maximal coherent
sample sets. We search the maximal coherent sample subsets by using a method
similar to that in [2]. First, for each gene gk, we test each pair of samples (si, sj)
and construct a binary triangle similarity matrix (cij): cij = 1 if gene gk is
coherent on the sample pair (si, sj); otherwise cij = 0.

After the construction of the matrix (cij), we convert the original problem to
find the complete set of maximal cliques. Though the problem is NP-complete, in
real microarray datasets the number of samples is usually less than one hundred.
Thus, we can use a depth-first search in the sample space to enumerate all the
possible maximal cliques. To further improve the performance, we associate the
time series range information in the similarity matrix. Consequently, the global
search space is partitioned into a number of sample subspaces, each of which
includes only those samples whose overlayed time series’ length is larger than
mint. The following algorithm describes the above process.

Algorithm 1: Computing maximal coherent sample sets.
Input: the GST data set, δ, mins, mint;
Output: the maximal coherent samples sets in any possible time series segment
for each gene;
foreach gene gk

compute similarity matrix cij of gk;
Initiate EC (Existed Maximal Cliques);
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//partition the search space into different subspaces
for i=1 to (time series length+mint-1)

extract the samples set S = {s1, . . . , sn} that the pattern of
each sample pair in S covers the time series segment (i, i + mint − 1);
for j=1 to (n − mins + 1)

CliqueSearch({si}, {si+1, . . . , sn]});
end for

end for
end foreach

Function: CliqueSearch(current, extend)
Let si be the last sample in current, if cij = 0, delete sample sj from extend ;
if (|current ∪ extend| < mins) // the number of samples is too small

then return;
if (current ∪ extend ⊂ C) // C ∈ EC, EC is existed maximal cliques set

then return; // further search won’t lead to new maximal cliques
if (extend is empty) then

take current as a new maximal clique and move it to EC ;
else

while (extend is not empty)
move the first sample of extend to current ;
CliqueSearch(current,extend);

end while
return;

4.3 Finding 3D Clusters

After obtaining the maximal coherent sample subset for each gene, the process
of mining triclusters is straightforward. First, we apply a depth-search strategy
similar to that in Algorithm 1 to enumerated subsets of samples. Then, for each
subset(combination) of samples, we need to find the maximal coherent gene set
Gs such that the genes in Gs are coherent on S. An efficient solution is to use
inverted list. In advance, we generate the inverted list Ls for each sample, which
consists of all the maximal coherent sample sets containing s. For example, we
have g1 = {s1, s2, s4}, g2 = {s1, s3, s4} as the maximal coherent sample sets
for genes, then the inverted lists for samples are s1 = {g1, g2}, s2 = {g1}, s3 =
{g2}, s4 = {g1, g2}. When we want to computer the maximal coherent gene sets
Gs for a subset of samples S, we only need to get the intersection of the inverted
lists. Last, we test whether (Gs × S) is a maximal coherent gene cluster and
combine with time segments information, thus we obtain a tricluster.

5 Experimental Evaluation

We implement gTRICLUSTER in JAVA and evaluate it on a real GST dataset.
To compare the performance of TRICLUSTER and gTRICLUSTER, we also
implement TRICLUSTER from scratch. The experiments are done on a PC
(2.0GHz Pentium-IV and 512M memory) running Windows XP.
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5.1 The Dataset

We use the real microarray dataset reported in [9], which studies the relation-
ship between the mRNA expression level regulation and the cell cycle. Among
the whole dataset, we focus on the time series for the Pheromone experiments.
There are totally 6178 genes whose expression values are measured from 0
to 119 minutes with 7-minute intervals. So there are totally 18 time points.
We conduct the routine data preprocessing procedure and filtered 255 genes
with errors or overfull missing values. Then we use 9 attributes of the original
dataset as the samples. Finally we get a GST microarray data set with size:
G × S × T = 5923 × 9 × 18. We apply gTRICLUSTER on the generated data
with parameters as follows: ming = 20, mins = 3, mint = 6, δ = 0.9. In to-
tal, we obtain 41 clusters that cover 5278 genes in the dataset. The overlap
ratio is 7.1%. On average each cluster contains 138 genes and 5 samples, and
the average time series span is 12 points. For TRICLUSTER, we set parame-
ters as follows: mx = 50(genes), my = 4(samples), mz = 5(time pints), and
ε = 0.01.

5.2 Effectiveness

The gene ontology (GO) project (www.geneontology.org) provides a controlled
vocabulary to describe gene and gene product attributes in any organism. We
use the Onto-Express (http://vortex.cs.wayne.edu/Projects.html) to verify
the biological significance of gTRICLUSTER’s clustering results. For each of the
following three gene function categories: biological processes, cellular components
and gene functions, we construct a hierarchy of GO terms for each gene in the
clusters found by gTRICLUSTER. Table 1 lists six significant clusters. From
column 1 to column 5, the data means the cluster number (Cluster No.), the
number of genes in the cluster (open reading frame, ORF), biological process,
molecular function, and cellular component respectively. For example, the genes
in cluster No. 0 are mainly related to conjugation. The tuple (n=34, p=0.000951)
means that out of the 73 genes in cluster 0, 34 belong to the conjugation process,
and the statistical significance is measured by the p-value of 0.000951.

From Table 1, we can see that gTRICLUSTER can find biologically meaning-
ful clusters. For example, in cluster No. 4, 14 genes belong to mRNA catabolism,
and in cluster No. 22, 27 genes belong to intracellular signaling cascade. How-
ever, most clusters in Table 1 cannot be identified by TRICLUSTER. In cluster
No. 4, 42 genes belong to the modification-dependent protein catabolism, while
TRICLUSTER can group only 3 such genes to one cluster.

Fig. 2 depicts the distribution of biological process in cluster 10. From Fig. 2a,
we can see that the majority of the genes in this cluster are involved in cellular
processes and physiological process, while genes involved in other biological pro-
cesses (e.g., development, regulation, viral life cycle) are very few. Furthermore,
examining Fig. 2b, it is noticeable that among the genes involved in physiolog-
ical process, those involved in metabolism and localization hold a large portion.
This result may help the users to predict the biological characteristics of the genes
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Table 1. Some biologically meaningful clusters mined by gTRICLUSTER

Cluster NO. Number of ORFs Biological Process Molecular Function Cellular Component

0 73 conjugation (n=34,
p=0.000951),
cell budding
(n=21,0.000477)

ubiqutin conjugat-
ing enzyme activity
(n=9, p=0.00439)

ubiqutin ligase
complex (n=13,
p=0.000765)

4 103 modification-
dependent protein
catabolism (n=42,
p=0.00000263),
mRNA
catabolism (n=14,
p=0.0000589)

ligase activity
(n=27, p=0.00112),
iosmeratse activity
(n=15, p=0.00275)

mitochondrial
nucleoid (n=7,
p=0.00837)

17 66 DNA damage
response, sig-
nal transduction
(n=8, p=0.00272),
response to oxi-
datate stress (n=9,
p=0.00992)

general RNA poly-
merase II transcrip-
tion factor activity
(n=20, p=0.00498),
transcription regula-
tor activity (n=12,
p=0.0000783)

nucleotide excision
repair complex
(n=6, p=0.00904)

22 71 intracellular signal-
ing cascade (n=27,
p=0.000754), mem-
brane fusion (n=15,
p=0.000534)

signal transducer
activity (n=20,
p=0.000343)

incipient budsit
(n=7, p=0.000365),
signalosome
complex (n=12,
p=0.000207)

29 202 protein targeting
(n=52, p=0.00124),
RNA-nucleus export
(n=20, p=0.000935)

structural con-
stituent of ri-
bosome (n=62,
p=0.000986), struc-
tural constituent
cytoskeleton (n=12,
p=0.00431)

cytoplasmic vesicle
(n=11, p=0.00509)

36 157 negative regulation
of cellular physiolog-
ical process (n=50,
p=0.000541)

translation regula-
tor activity (n=12,
p=0.00565)

bud tip (n=10,
p=0.00823), mating
projection tip (n=8,
p=0.00476)
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Fig. 2. The biological process distribution of cluster 10

in cluster No 10 even when the users has little knowledge of those genes. It also
shows that gTRICLUSTER can find potentially biologically significant clusters
in GST microarray data.



gTRICLUSTER: A More General and Effective 3D Clustering Algorithm 57

5.3 Robustness to Noise

With the inherent inaccuracy of microarray experiments, the expression data
may contain noise such as missing value or numerical value fluctuation. So a
practical clustering algorithm should be robust to noise. We use the Adjusted
Rand Index (ARI) [5] as the performance metric for robustness to noise. ARI
is used to evaluate the similarity between the clustering result based on domain
knowledge (simply K) and that obtained by TRICLUSTER or gTRICLUSTER
(simply R). ARI is computed as follows:

ARI(K, R) =
2(ad − bc)

(a + b)(b + d) + (a + c)(c + d)
(3)

where a, b, c and d respectively represents the number of object pairs that belong
to the same cluster in both K and R, belong to the same cluster in K but not
R, belong to the same cluster in R but not K, and belong to different clusters in
both K and R. ARI’s values lies between 0 and 1, and larger value means higher
similarity between the clustering results. If the experimental result is perfectly
consistent to the domain knowledge, the index value will be 1. If a clustering is
no more than a random choice, the index will be zero.

We apply gTRICLUSTER on the original dataset and take the result as the
domain knowledge. We add 1%, 2%, 4%, 6%, 8% and 10% noise (missing values
and fluctuation of values) into the original dataset respectively, then compute
the ARI values between the results on noisy datasets and the domain knowledge
(corresponding to the original dataset). Such a process is repeated ten times.
Similar experiments are also conducted with TRICLUSTER. The results are
illustrated in Fig. 3, where the best, average and worst curves correspond to the
best, average and worst results respectively. It can be seen that the ARI values
of gTRICLUSTER are larger that of TRICLUSTER for all experiment setting,
which means that gTRICLUSTER is more robust to noise than TRICLUSTER.

We then use the precision and recall metric to evaluate the stability of gTRI-
CLUSTER’s clustering results in time and sample dimensions. Similarly, we take

Fig. 3. Comparison of robustness to noise: gTRICLUSTER vs. TRICLUSTER
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(a) The precision of sample dimension (b) The recall of sample dimension

Fig. 4. Precision and recall of sample dimension

(a) The precision of time dimension (b) The recall of time dimension

Fig. 5. Precision and recall of time dimension

the clustering results without noise as domain knowledge. For each clusters pair,
denote a, b, c as the numbers of samples (time points) selected both by K and R,
the number of samples (time points) selected by R, the number of samples (time
points) selected by K. The precision of sample/time dimension is a/b and the
recall of sample/time dimension is a/c. Experimental results are shown in Fig. 4
and Fig. 5 respectively. We can see that even in noisy condition gTRICLUSTER
keeps high precision and recall in both sample and time dimensions.

6 Conclusion

In this paper, we present a novel clustering algorithm called gTRICLUSTER,
to mine 3D clusters in GST microarray data. Our experiments on a real-world
microarray data set show that gTRICLUSTER can mine biologically meaningful
clusters effectively and has good robustness to noise.

Recent studies have noticed the time shifting phenomenon in gene expression
data: two similar patterns may appear in different time ranges, i.e., there is a
time latency between two similar patterns. Some näıve techniques have been
developed to handle such a problem, but the computation cost is very high. For
future work, we plan to develop new algorithms to mine this kind of patterns in
GST data based on dynamic programming.
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Abstract. Though the number of completely sequenced genomes quickly grows 
in recent years, the methods to predict protein functions by homology from the 
genomes have not been used sufficiently. It has been a successful technique to 
construct an OPCs(Orthologous Protein Clusters) with the best reciprocal 
BLAST hits from multiple complete-genomes. But it takes time-consuming-
processes to make the OPCs with manual work. We, here, propose an automatic 
method that clusters OPs(Orthologous Proteins) from multiple complete-
genomes, which is, to be extended, based on INPARANOID which is an 
automatic program to detect OPs between two complete-genomes. We also 
prove all possible clustering mathematically. 

1   Introduction 

Although an unprecedented amount of amino acid sequences has been accumulated in 
databases, the most protein functions have not been known. Though the number of 
completely sequenced genomes have especially been increased above 150 species, the 
methods to extract functional information from the species have not been used 
sufficiently. Predicting protein functions by homology is one of the fundamental 
researches in bioinformatics. When recognizing the unknown functions of protein 
sequences, it is very useful to infer the functions of the new sequences from the 
protein sequences with known functions.       

One of techniques to predict the unknown protein functions from the known 
protein functions is to construct an OPCs. It is possible to infer the unknown functions 
of protein sequences from the known protein functions by clustering the proteins with 
same functions into same groups as distinguished from other proteins with different 
functions. When inferring the functions of the new protein sequences recognized by 
biological experiments, we can also predict the functions by comparing the sequences 
with the OPCs.  

It could be supposed that organisms are evolving through gene duplication and 
speciation. The functions of the duplicated proteins are thought to be changed each 
other as evolving with time after the species split. Those of the others are believed not 
to be changed with time. As there happen mutations with time, the sequence similarity 
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of proteins may become less. The closer the time the species split is, the higher the 
similarity will be. The farther the time speciation happens is, the less sequence 
similarity may become. At that time it could be supposed that the evolving rates of the 
whole proteins in a genome are almost the same. The sequence similarity of specific 
genes between two genomes, which have the same functions each other, is therefore 
expected to be higher than the others.  By clustering the protein pairs with one 
another's reciprocal best hits by comparing protein pairs among the completely 
sequenced genome pairs, since the similarity of the protein sequences with the same 
functions is the highest of all protein pairs in each genome pairs, we can make an 
OPCs. Such genes evolved by only speciation are called orthologs[1] and have been 
classified as a group with the same function. The speciating genes after gene 
duplication are called paralogs[1] and have been studied as taking different functions 
each other[2].  

When constructing an OPCs, we face an obstacle. It takes time-consuming-
processes to deal with large datasets of protein sequences by hand.  We propose an 
automatic method which clusters OPs automatically from multiple complete-genomes 
without almost manual work. 

Section 2 discusses related work. Our approach of constructing an OPCs is 
represented in Section 3. The proof of all possible clustering is given in Section 4. We 
conclude with a discussion of our work. 

2   Related Work 

The COGs(Clusters of Orthologous Groups of proteins)[3] were clustered from 21 
complete genomes of bacteria, archaea and eukaryotes, between which proteins with 
the best reciprocal BLAST[4] hits are supposed to be orthologous each other. The 
method to be used is to detect triangles formed from protein lines(pairs) with mutually 
best hits among genomes and merge triangles with a common side of a protein 
line(pair) through biological analysis without an arbitrary threshold.  

The COG database[3, 5] in NCBI(National Center for Biotechnology Information) 
is constructed from 66 complete genomes using the gapped BLAST program. The 
BLAST is very efficient and fast by using the heuristic method[6, 7, 8, 9, 10], but it 
has been known that it is very difficult to detect the homology between evolutionarily 
distant genomes[11, 12, 13, 14].   

KO(KEGG Orthology)[15] is a database with the ortholog group tables, which 
contain orthologous genes extracted from metabolic pathways or regulatory pathways. 
KO is almost exactly classified because it is manually edited from the 
pathways  which show the functional relations of proteins clearly.  

INPARANOID[16] is a fully automatic program that detects proteins with the 
best reciprocal BLAST hits between only two genomes and decides a main protein 
pair of a and b , fixed as a center point, from which additional in-paralogs(orthologs) 
are clustered. To avoid the relations of the evolutionarily distant genomes and short-
domain-level matches, a score cut-off of 50 bits and an overlap longer than 50% of 
the longer sequence were only used. They compared their results with those of the 
phylogenetic method. INPARANOID detected the additional orthologs of 7% than 
the method, and discovered the false positives of 9%, the false negatives of 3%,  
and the true positives of 84%.  
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Montague et al.[17] disclosed differences in the degree of conservation between 
functional classes of genes by introducing COG Stringency Number in addition to the 
COG technique. Clues for genes with related functions may appear by their method.  

Stuart et al.[18] made an OPCs which is defined as metagenes clustered from 
multiple eucaryote organisms for explaining the fact that the functions of genes 
conserved through evolution are globally related with each other. The metagenes are 
clustered by the similar way as constructing COGs except an E-value less than 10-5 to 
make a purer OPCs.  

In this paper, our aim on construction of an OPCs is to prove all possible clus-tering 
mathematically. Our approach begins with the results produced by INPARANOID[16]. 
We, therefore, settle on the quality of orthologs detected by the INPARANOID 
program. 

3   Our Approach 

3.1   The Algorithm's Basis  

Sequence space can be represented as a graph. The nodes of the graph represent the 
sequences and the links among nodes represent the degree of similarity[2]. As shown 
in Fig. 1, genomes consist of proteins(genes), which can be represented as G1={g11, 
g12, g13, ..., g1a} and G2={g21, g22, g23, ..., g2b} when G1 and G2 are genomes, and g1i 
and g2j are proteins. If a protein pair with the reciprocal best hit between two genomes 
is identified, the protein pair has better similarity than other protein pairs, and each 
protein of the pair is supposed to be orthologous. The orthologous protein lines are 
respectively stored in a table.  

Definition 1. If a protein pair has the best reciprocal BLAST hits between two 
complete genomes, the protein pair is a protein line. 

 

Fig. 1. A protein pair with the reciprocal 
best hit 

 

Fig. 2. Protein pairs relationships with the reci- 
procal best hits among three genomes 
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Definition 2. If  a cluster has ones more than or equal to two protein lines with 
common genes, the cluster is an orthologous protein cluster. 

Let’s consider a simple example. There are three genomes, which have protein pairs 
relationships as shown in Fig. 2. The protein pairs with the reciprocal BLAST best 
hits between two genomes can be stored as the tables of Fig. 3. From the protein pairs 
with common proteins of the three tables, which are flagged not to search repeatedly, 
each orthologous-protein-cluster can be constructed separately as in Fig. 4. Each 
cluster in the Γ table has its inherent protein function different from the others.   

When considering n genomes, we can, in general, have n(n-1)/2 tables with the 
lines of protein pairs as Fig. 5.  

 

Fig. 3. Proteins pairs tables with the reciprocal best hits among three genomes 

 

Fig. 4. A total table with the reciprocal best  
hits among three genomes  

 

Fig. 5. All possible genome pairs and tables  
from n genomes 

3.2   Clustering Algorithm 

The suggested algorithm has two procedures. The first procedure is to cluster all 
possible OPs from n genomes. The second procedure is to cluster additional OPs into 
the already grouped clusters. 

First stage: Detect and save all possible protein pairs with the best reciprocal BLAST 
hits among n genomes, and merge all possible lines(pairs) with common proteins. 

Second stage: To add new proteins of a new genome to the clusters, detect and save 
all possible protein pairs with the best reciprocal BLAST hits between the new 
genome and n genomes, and merge all possible lines(pairs) with common proteins.  
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Fig. 6. Algorithm to cluster n genomes 

 

Fig. 7. Algorithm to add an additional genome
to the previously grouped clusters 

 

Fig. 8. Algorithm to get all possible protein pairs with BLAST from n genomes 

 

Fig. 9. Algorithm to get all possible protein pairs with BLAST from a new genome and n 
genomes 

Fig. 6 shows the subroutines of the first stage to cluster the protein pairs among n 
genomes and Fig. 7 shows the second stage. Fig. 8 and Fig. 9 show the steps to get 
all possible protein lines with the best reciprocal BLAST hits among n selected 
genomes, and between a new genome and n genomes. The results of both Fig. 8 and 
Fig. 9 can be drawn from INPARANOID program. Fig. 10 shows the tables with all 
possible protein lines(pairs) among three genomes by BLAST. Fig. 15, using the 
tables from Figure 10, shows all possible steps to search all possible protein 
lines(pairs) with common proteins, and save the proteins into the total table of . 
Next, Fig. 16 presents all possible steps to search all protein lines with common 
proteins from the tables gotten due to adding genomes 4th – nth , and save the 
detected proteins into .  

 

Fig. 10. The tables to be taken from three genomes 
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Fig. 11. The relationship between the three
tables due to the 4th genome and the total table
gotten from the three genomes 

 

Fig. 12. The horizontal relationship between 
the tables from three genomes and the tables 
due to the 4th genome 

 

Fig. 13. The vertical relationship between the
tables from three genomes and the tables due
to the 4th genome 

 

Fig. 14. The relationship among only the tables
due to the 4th genome 

 

Fig. 15. Algorithm to cluster three selected genomes 

We, here, explain all the steps in detail to cluster the 4th genome to nth into the total 
table with the OPs of the three genome. All the protein lines(pairs) with common 
proteins among three tables are represented as in Fig. 15. The compared common 
genomes in the table of T are represented as the subscript numbers in parentheses. In 
the total table of Γ, the common genomes are represented as the subscript numbers. 

From the new three tables due to the additional 4th genome, all possible steps to 
search and save protein lines with common proteins, when compared with the total 
table of , are represented as Fig. 11 and the following expressions in general, which 
have the same meaning as the statements of the lines 1-7 in Fig. 16.  All the steps can 
be generalized  as case (a) and case (b) of formula (1). 
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Fig. 16. Algorithm to cluster orthologous protein from the 4th genome to the nth genome 
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After the above phase, all possible steps to search and store the protein lines with 
common proteins from the tables are considered as Fig. 12 in case of the 4th genome 
and the following expressions in general. In this case the lines 8-20 of Fig. 16 have 
the same steps as those.  All the steps are generalized as case (a) and case (b) of 
formula  (2). 
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After finishing the above phase, Fig. 13 in case of the 4th genome and in general 
formula (3) follows, which are also expressed by the lines 21-33 of Fig. 16. 
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Finally, all possible steps among just the tables due to the fourth genome are 
represented as Fig. 14 in case of the 4th genome, and the following expressions in 
general, which have the same steps as the lines 34-42 of Fig. 16.  All the steps are 
expressed as case(a) and case(b) of formula (4).   
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4   Proof of All Possible Clustering 

Lemma 4.1. If there are n(n-1)/2 tables with OPs  from n complete-genomes, then the 
total or partial unions of the tables consist of orthologous proteins. 
Proof. It is trivial to prove this lemma. Since n(n-1)/2 tables drawn from n complete-
genomes include only OPs, the total or partial sums of the tables must consist of only 
OPs.                                                                                                                                 

Lemma 4.2. If there are lines(orthologous protein-pairs) with common proteins, then 
an orthologous protein cluster consists of the total or partial unions of the lines. 

Proof. It is also trivial to prove this lemma. If the lines have common proteins, then 
the total or partial sums of the pairs make an orthologous protein cluster.                    

Theorem 4.1. Formula (1) clusters all possible OPs among the total table Γ and the 
new tables due to additional genomes. 

Proof. Let’s consider Fig. 15, Fig. 11, and the following expressions. 
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Algorithm Fig. 15 represents all possible combinations of tables drawn from three 
complete-genomes to get OPCs. By Lemma 4.1 and 4.2, the above expressions 
explain all possible combinations of the total table Γ and the new tables due to the 4th 
genome. From this specific fact, we can easily generalize the above equations into 
formula (1).                                                                                                                     

Theorem 4.2. Formula (2) clusters all possible OPs with horizontal relationships 
among the prior tables and the new tables due to additional genomes, and all possible 
OPs among the total table Γ and the rest of the new tables due to additional genomes. 

Proof. Let’s consider Fig. 12, and the following expressions. 
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By Lemma 4.1, 4.2 and the above equations, we can represent the horizontal 
relationship between the tables drawn from three genomes and the tables due to the 4th 
genome, and all possible OPs among the total Γ and the rest of the new tables due to 
the 4th genome. These equations are generalized into formula (2).                                

Theorem 4.3. Formula (3) clusters all possible OPs with vertical relationships 
among the prior tables and the new tables due to additional genomes, and all possible 
OPs among the total table Γ and the rest of the new tables due to additional genomes. 

Proof. Let’s consider Fig. 13, and the following  expressions. 

)(

)(

)(

)(

)4(344
1

4

)4)1(11
1

1

)4(144
1

4

4)2()2(12
1

2

ΤΓΓ=Γ

ΤΓΓ=Γ

ΤΓΓ=Γ

ΤΤΓ=Γ

+

+

+

+

nnn

nnn

nnn

nn

, 

)(

)(

)(

)(

)4(244
1

4

)4)1(11
1

1

)4(144
1

4

4)3()3(13
1

3

ΤΓΓ=Γ

ΤΓΓ=Γ

ΤΓΓ=Γ

ΤΤΓ=Γ

+

+

+

+

nnn

nnn

nnn

nn

, 

)(

)(

)(

)(

)4(244
1

4

)4)2(22
1

2

)4(144
1

4

4)3()3(23
1

3

ΤΓΓ=Γ

ΤΓΓ=Γ

ΤΓΓ=Γ

ΤΤΓ=Γ

+

+

+

+

nnn

nnn

nnn

nn

 

By Lemma 4.1, 4.2, and the above expressions, we can represent the vertical 
relationship between the tables drawn from three genomes and the tables due to the 4th 
genome, and all possible OPs among the total Γ and the rest of the new tables due to 
the 4th genome. If  these equations are generalized, formula (3) is formed.                   

Theorem 4.4. Formula (4) clusters all possible OPs among the rest of the new tables 
due to additional genomes, and all possible OPs among the total table Γ and the rest 
of the new table due to additional genomes. 

Proof. Let’s consider Fig. 14, and the following expressions. 
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By Lemma 4.1, 4.2 and the above equations, we can represents all possible 
combination between only the tables due to the 4th genome, and all possible OPs 
among the total table Γ and the rest of the new table due to the 4th genome. The 
equations are generalized as formula (4).                                                                       

5   Conclusion 

To infer the unknown protein functions, it is very useful to cluster orthologous 
proteins from the completely sequenced genomes. COG database is an OPCs 
constructed with the best reciprocal BLAST hits with biological analysis. 
Unfortunately, it needs much time to detect homology between multiple complete-
genomes by using BLAST algorithm with manual work. As the number of complete 
genomes especially rises, it needs much more time and effort to cluster them. Remm 
et. al.[16] made a fully automatic program to detect OPs between two genomes to 
attack this problem. For extending their work about two complete-genomes to 
multiple complete-genomes, we suggested an automatic method to cluster OPs 
without almost manual work from multiple complete-genomes. We also proved, 
mathematically, all possible combinations of orthologous protein lines with common 
genes, which are drawn from multiple complete-genomes by using INPARANOID.  

The ClusteringGenomes algorithm of Fig. 6 is Ο(n4). This is not reasonable for a 
large n value. Future work will address this problem by using parallel computing or 
others. 
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Abstract. As the gene sequencing technology has been maturating, genomes of 
more and more organisms and genetic sequences are available in international 
repositories. However, the biological functions of most of these genes remain 
unknown. Microarray technology opens a door to discover information of 
underlying genes and is widely used in basic research and target discovery, 
biomarker determination, pharmacology, target selectivity, development of 
prognostic tests and disease-subclass determination. Clustering is one of the 
typical methods of analyzing microarray data. By clustering the gene 
microarray expression data into categories with similar profiles, genes with 
similar function can be focused on. There are many clustering methods used for 
the analysis of gene microarray data. However, they usually suffer from some 
shortcomings, such as sensitive to initial input, inappropriate grouping, difficult 
to discover natural or near optimal clusters, and so on. In this paper, we propose 
a novel clustering method to discover the optimal clusters by searching PPVs 
(Pair of Prototype Vector). The experiment results show that our method works 
very well. 

1   Introduction  

In the post-genome era, with the great improvement of sequencing technology, 
genomes of more and more organisms have been sequenced, which results in that 
millions of genetic sequences have been deposited in international repositories. 
However, the biological functions of most of these genes contained in such large 
amount of raw data remain unknown. Therefore, one main task in post-genome era is 
to find the functions of the genes. One way to determine the functions of these genes 
is through repeated measurements of their RNA transcripts. Since microarray 
technology, developed in 1995 by Dari Shelton as his PhD thesis at Stanford 
University, can give global information on transcriptions of genes and measure the 
genome-wide mRNA abundance in the cellular process under all kinds of 
experimental environment [1]. Analysis of microarray data (also called as gene 
expression data) produced by this technology can help to discover the gene functions. 
Clustering and class prediction are typical methods currently used in gene expression 
data analysis. By clustering analysis, one can discover 1) the gene groups with similar 
function, which is based on the biological premise that the biological coexpressed 
                                                           
* The corresponding author. 
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genes are likely to be coregulated and are therefore likely to perform similar 
biological functions; 2) the static information of gene expression such as gene 
expression condition in each time spot or organism, and the dynamic information that 
how one gene expression pattern gets related to another one as well.  

Although a lot of clustering algorithms have been used in the microarray data 
analysis, for example, SOM [2] [3], K-Means, hierarchical [4], and some other 
clustering methods such as those based on information theory [5] and statistic modal 
[6][7], they still confront with some problems. First, some algorithms require the 
users to predetermine some parameter values. For example, how to set the K value in 
K-Means clustering and when to stop the hierarchical clustering procedure, and so 
forth. However, it is difficult for biologists to give suitable parameters. Second, some 
algorithms are sensitive to the input order of data. Take the K-Means method as an 
example once again, if the initial partitions are not chosen carefully enough, it will 
run the risk of converging to a local minimum rather than the global minimum 
solution. Third but the most important, there are seldom algorithms can discover 
natural clustering number or near-natural one automatically. Recently some efforts 
have been made to come up with such shortcomings [8] [9]. They often assume that 
the whole set of microarray data is a finite mixture of a certain type of distributions, 
usually Gaussian mixture [10], and propose a static model. However, such model 
faces two key challenges: one is that the microarray data usually have small number 
of samples but with a very large amount of genes, which makes it difficult for the 
model to fit the data very well in the statistical way; the other one is that the 
expression levels for an individual gene may not be independent, which conflicts with 
the independent assumption of the model.   

Here we notice that the natural groups of the genes have the characteristic that each 
group has distinguished patterns and usually the shape of patterns can be represented 
approximately by several typical gene patterns. If we can find some sets of typical 
representative genes, such that the genes in the same set have most similar expression 
patterns and genes from different sets have very different expression patterns, then we 
can easily get the clusters.  Moreover, finding several representative genes, instead of 
directly clustering the whole expression data, also makes the time cost of the 
computation lower.  

How many representatives should be selected? Enlightened by the idea of [11] that 
finding more representatives for each cluster is superior to finding only one, in this 
paper, we choose two, which we call as a PPV (pair of prototype vectors), to represent 
a cluster.  According to above ideas, we propose a novel clustering method based on 
PPV Search Technology (PPVST), called as PPVTOC (Pair of Prototype Vector 
Takes One Cluster).  

The measurement method of (dis)similarity between genes is very important for 
gene clustering. Since the widely used Euclidean distance and Pearson Correlation 
have some disadvantages that will be analyzed in the next section, we define a new 
simple distance measurement, which we call Curvature Distance.  

According to the Curvature Distance, PPVTOC first iteratively finds PPVs such 
that the intra-distance of PPV is minimal and inter-PPV distance is maximal as 
possible as it can. The number of final automatically found PPVs is the number of the 
clusters that the genes will be partitioned into. Then each PPV competes for all rest 
genes into its own cluster until it reaches an optimal grouping state.  
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The rest of the paper is organized as following. Section 2 presents the distance 
measurement of gene dissimilarity. In section 3, we describe the proposed PPVTOC 
clustering method, and the evaluation experiment results are shown in section 4. 
Finally, the conclusions are drawn in section 5.    

2   Curvature Distance  

In microarray data, a gene expression profile can be viewed as a vector with n 
dimensions of the expression values, where n is the number of experiments or time 
points for that gene. By comparing these vectors, we can find which genes show 
similar (or dissimilar) data profiles across a series of experiments or time points. 
Given two gene expression profiles X= (Xi), Y= (Yi), the most widely used method is 
Euclidean distance, which is given by formula (1):  

2

1

1
( , ) ( )

n

Euclidean i i
i

dis X Y X Y
n =

= −  (1) 

According to the Euclidean distance, the smaller the distance, the more similar the 
two genes are. So the data must be normalized before calculating their distance. Even 
though, the Euclidean distance does not consider the changing trends of the genes, 
which would make the distance between two completely different genes is equal to 
the distance between two similar genes. For example, Fig. 1 illustrates two cases (a) 
and (b) with equal Euclidean distances between data A and data B, however, they 
have similar profiles in the Fig. 1(a), yet they have completely different profiles in the 
Fig. 1(b). Therefore, the dynamic information that includes changing trend of two 
gene profiles is also what we are interested in, whereas Euclidean distance neglects 
such key information. So in this paper we don’t adopt Euclidean distance to measure 
the dissimilarity between gene profiles.  

 
(a) (b) 

Fig. 1. A and B have equal Euclidean distance, while in (a) A and B have similar profiles, and 
in (b) they have completely different profiles 

Pearson Correlation, which in shown as formula 2, is also widely used to measure 
the similarity of two gene profiles.  
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Pearson Correlation does not require that the data should be normalized, and it also 
considers the change trend of the data. The value of Pearson Correlation varies from   
-1 to 1. Positive value means positive correlation (similar) and negative value means 
negative correlation (dissimilar). However, the negative values are inconvenient to 
compute and understand. We hope that there is one way that not only has the value 
range like Euclidean distance from 0 to x (x ≥ 0), but also can reflect the changing 
trend of gene profiles like Pearson Correlation. 

Here, we define a new measurement called as Curvature Distance to measure the 
dissimilarity between two gene expression profiles. Curvature Distance meets  
the requirements of ordinary distance function definition: 
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In our method, supposing the microarray data S has n genes with m experiments. 

1 2( , )i i i imX x x x= K  is the gene expression profile of gene i: 
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In order to reflect the change of consecutive spots of a gene Xi, we define a vector 
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h is the mean of S, which reflects the average expression level. Then, we get a new 
matrix VS derived from matrix S,  
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Finally, we can define the Curvature Distance between two genes as formula (4). 
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Obviously, Curvature Distance satisfies the requirements (I), (II), (III). 
Applying the Curvature Distance to measure dissimilarity between A and B in 

Fig.1, the value of discurvature between A and B in Fig. 1(a) is 0.89, while the value of 
discurvature between A and B in Fig. 1(b) is 1.33. Comparing two distance values, the 
former one is less than the later one, which reflects A and B in Fig. 1(a) have better 
similarity than those in Fig. 1(b) and discurvature can distinguish them. 

3   PPVTOC Clustering Method 

Although various clustering algorithms have been used for gene expression data 
analysis, they suffer from some drawbacks such as difficulty to discover natural 
clustering number, sensitivity to initialization of input data, and so on. In [12], the 
authors suggested that using one-prototype-to-take-one-cluster (OPTOC) is superior 
to using one-prototype-take-multiple-cluster (OPTMC). Fig. 2 shows the main ideas 
of OPTMC and OPTOC mentioned in [12]. OPTMC means that if the number of 
prototypes is less than number of the natural clusters in the dataset, there must be at 
least one prototype to win patterns from more than two clusters. Obviously, OPTMC 
can’t get an ideal clustering result. In contrast, the OPTOC paradigm allows one 
prototype to characterize only one natural cluster in the dataset. Therefore, one natural 
cluster can be found by searching its relevant prototype. However, using only one 
prototype to represent the cluster is not enough [11]. Since there are more than one 
typical characteristic element to represent their relevant natural cluster, it is more 
possible to find natural clusters by discovering more representative information. So in 
this paper, we use two representatives (PPV) to represent the natural cluster. 

 
Fig. 2. Two learning methods: OPTMC versus OPTOC. (a) One prototype takes the center of 
three clusters (OPTMC). (b) One prototype takes one cluster (OPTOC) and ignores the other 
two clusters. 
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3.1   Finding PPVs 

A basic principle of clustering is to make distance of intra-cluster minimal and 
distance of inter-cluster maximal as possible as we can. Therefore, PPV should be 
vectors that are most possibly grouped into the same cluster and are the most 
representative vectors of their cluster. Let S denote the whole dataset. So we first  
find two vectors ,k lX X with

1 ,1
( , ) { ( , )}curvature k l curvature i j

i n j n
dis X X M in dis X X

≤ ≤ ≤ ≤
= . 

Undoubtedly, they should be a PPV according to intra-cluster distance minimization 
principle and added into Vs, for they are most similar vectors in S. We denote this pair 

as PPV0. Next, in order to find another new PPV, we first search a vector furthestX  

that is farthest to PPV0 based on the principle of inter-cluster distance maximization. 

viz.
0

1
{ ( , )}furthest curva ture i

i n
X M ax dis X P P V

≤ ≤
= , considering that furthestX  will be 

finally grouped into some cluster, we attempt to find a new PPV of the cluster that 

furthestX  belongs to according to the method described below.   

Method to discover new PPV 

 
Input: Vs 
1. Initialization: 

D=10000 
Dt=10000                                      /*Record distance and 10000 is great enough*/           

2. Find FV of  Vs by ||FV-Vs||=Max{||X-Vs||}, X,FV Vus                                                           
 D=||FV –Vs ||                               /*||X-Vs|| indicates the distance between X and Vs*/ 

3. Find NV of FV by ||NV-FV||=Min{||X-FV||},X S        
Dt=||FV-NV|| 

4. If(Dt<D) 
{ 
D=Dt 
FV=NV 
Go to step 3 
} 

5. If(NV Vs or  Stop( )=TRUE) 
Go to step 7 

6. Add NV and its nearest vector into Vs and they are the new PPV       
       Remove them away from Vus 
7.  End 
 

Note: Vs: the set of vectors that have been selected as a member of some PPVs, at 
beginning

sV =∅ . Initially, the most similar vectors in dataset will be selected 

into Vs as the PPV0. 
Vus: the set of vectors that have not been selected as a member of any PPV, 

and at beginning Vus=S. 

Given Vs, above procedure tries to find out new possible PPV. It should be far from 
all existed PPVs in Vs for inter-cluster distance should be maximal as possible as it 
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can, so the method finds the vector, called FV, which is furthest from all PPVs in Vs. 
Here we denote the minimum value among distance between X and each PPV in Vs as 
the distance between X and Vs, viz. ||X-Vs||=Min {||X-PPVk ||}, PPVk Vs, X Vus. 
Through defining in this way, it can put FV in the area far from all existed PPVs to 
search new possible PPV. Based on the logic premise that the FV should be divided 
into some cluster at last and the FV is most possible to be grouped into the same 
cluster together with vector NV that is nearest to FV. There are two conditions that 
can decide the searching procedure to stop. One is if there is no new NV found, the 
procedure stops searching. The other one depends on the function of stop( ) which is 
operated by users through observing the judging diagram that describes the distance 
between the new found possible PPV and Vs.  

 

Fig. 3.  Judging diagram 

After finding a new possible PPV every time, we compute the distance between it 
and Vs. According to the algorithm, this PPV must be far from all existed PPVs in Vs 
as possible as it can. Therefore, if all natural clusters are not found, the new possible 
PPV should represent a natural cluster different from those that PPVs in Vs represent. 
The distance between new PPV and Vs is approximately equivalent to inter-cluster 
distance, whereas, if all natural clusters are found, the distance between new PPV and 
Vs is approximately equivalent to intra-cluster distance for there is no other natural 
cluster can be represented by the new possible PPV. Obviously, the inter-cluster 
distance is always greater than intra-cluster distance. So the Judging diagram will 
show like the Fig. 3. At point 4, it is a dividing point which can indicate the natural 
number. Because the series of distance before the dividing point reflect inter-cluster 
distance, while series of distance after it reflect intra-cluster distance and the dividing 
point divides the diagram into two distinct parts. In Fig. 3, the dataset should contain 
five natural clusters, which are represented by four searched PPVs and one initial 
PPV. Therefore, the searching procedure usually stops according to function of stop( ) 
when user observes the dividing point in the judging diagram.  

For large dataset, beginning with an initial PPV, the method can finally discover 
several PPVs. The number of found PPVs is the final cluster number that the genes 
will be grouped into. 

3.2   Clustering Based on PPVs 

The found PPVs, each of which represents a cluster, will compete for rest vectors in 
Vus. For example, a vector X in Vus will be divided into cluster whose PPV has nearest 
distance with X. 
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In order to avoid losing any PPV in S, after finding out a set of PPVs and finishing 
the final clustering, we can also use (5) to assist us to validate the accuracy of the 
natural cluster number decided by the dividing point in the judging diagram. 

1

|| ||
i

c

e i
i y

J y PPV
= ∈Γ

= −  (5) 

Where, C is the number of PPVs, iΓ  represents cluster i.  

 

Fig. 4. The number of well grouped clusters is inflexion 

In Fig. 4, the value of Je decreases along with C increasing. Supposing that the 
natural cluster number of dataset S is K, Je will sharply decrease when the cluster 
number increase from K-1 to K. but if one natural cluster is artificially split into two 
clusters, Je will decreases little. So the separation procedure should stop at the 
inflexion point, which should accord with natural cluster number decided by  
the dividing point in the judging diagram.  

4   Evaluation Experiments 

4.1   Experiment on Artificial Data 

In order to evaluate the performance of our PPVTOC clustering method, we generate 
a testing dataset including five clusters and the size of each cluster is 10. We number 
data in the first cluster from 1 to10, data in second cluster from 11 to 20 and the rest 
can be deduced by analogy. Each data in the testing dataset is two dimensions so that 
the distribution of the dataset can be easily observed.  

 
(a)                                                         (b) 

Fig. 5. (a)  The distribution of dataset and (b) the judging diagram 
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Appling PPVTOC clustering method to the testing dataset and through seven times 
iterative searching, we get the judging diagram shown in Fig. 5(b). From the judging 
diagram, we can clearly find the point 4 is the dividing point. It means the dataset 
should be separated into five natural clusters, which accords with the distribution of 
dataset shown in Fig. 5(a). At the same time, we record the order of FV of Vs once a 
new PPV is added into it. They are 24, 17, 32, 48, 15, 42, and 27, beginning with the 
initial PPV, whose vectors are 1 and 4.  FV falls in different cluster area each time so 
that it won’t be able to compete with exited PPVs, which proves the validity of the 
mechanism of searching possible PPVs. 

4.2   Experiment on Yeast Cell Cycle Data 

In this part, we use the yeast cell cycle data to evaluate our method. The yeast cell 
cycle dataset was published by Cho et al. [13]. It contains the expression profiles of  
 

           
(a) Cluster 1 

           
(b) Cluster 2 

           
(c) Cluster 3 

          
(d) Cluster 4 

           
(e) Cluster 5 

Fig. 6. Left part is profiles of 5 PPVs found by PPVST and right part is clustering results 
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6220 genes over 17 time points (treatments) taken at 10 minute intervals, covering 
nearly two cell cycles. In fact, the yeast cell cycle data set has established itself as a 
standard for the assessment of newly developed clustering algorithms. This dataset is 
very attractive because a large number of genes contained in it are biologically 
characterized and have been assigned to different phases of the cell cycle. The entire 
dataset is available at http://cellcycle-www.stanford.edu. For comparison reason, here 
we use a subset of 384 genes, which was ever studied by Yeung et al. [6] and is 
available at http://www.cs.washington.edu/homes/kayee/model. All the 384 genes 
were assigned to one of the 5 clusters by the original investigators Yeung et al. [6]. 
    Through computing the distance between each data using the curvature distance 
and applying the PPVTOC clustering method, the found PPVs and the clustering 
results are shown in Fig. 6. From the subset of 384 genes, our method discovered 5 
PPVs. Comparing our results with those of Yeung et al., the clustering number is the 
same as Yeung et al. and the profile of each PPV basically matches the profile of its 
cluster. However, we also noticed that the third PPV shown in Fig. 6(c) is different 
from Yeung et al. In Yeung’s experiment, although the third PPV is divided into 
different clusters, from the gene microarray profile they are so similar that should be 
in the same cluster. 

5   Conclusions 

In this paper, we proposed a new clustering method PPVTOC for analysis of gene 
microarray data. In order to discover dynamic information underlying gene microarray 
data such as gene coordinate expression, we discussed the disadvantages of the popular 
(dis)similarity measurement methods and gave a new simple distance function; this 
new type of distance can properly reflect the dissimilarity and coordinateness among 
genes. According to the principle of intra-cluster distance minimization and inter-
cluster distance maximization, we proposed PPVST to search PPVs that are the 
representatives of natural clusters. With the judging diagram, users can easily obtain 
the natural clustering number automatically without any parameters given. The 
evaluation results on artificial data and yeast cell cycle data show that our method can 
discover optimal clustering number and get the proper results.  

Next step, our method needs to be validated with larger dataset and under more 
complex situation. Moreover, we will make use of the clustering results to do further 
researches [14] [15]. For example, we can examine those genes that cluster together 
and assign a function or value to the cluster and combine it with other knowledge 
about known transcription factors, regulatory elements, sequence or structure 
information, or assigned gene functions to search new associations in biology. 
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Abstract. Biological data set sizes have been growing rapidly with the
technological advances that have occurred in bioinformatics. Data mining
techniques have been used extensively as approaches to detect interesting
patterns in large databases. In bioinformatics, clustering algorithm tech-
nique for data mining can be applied to find underlying genetic and bio-
logical interactions, without considering prior information from datasets.
However, many clustering algorithms are practically available, and differ-
ent clustering algorithms may generate dissimilar clustering results due
to bio-data characteristics and experimental assumptions. In this paper,
we propose a novel heterogeneous clustering ensemble scheme that uses
a genetic algorithm to generate high quality and robust clustering results
with characteristics of bio-data. The proposed method combines results
of various clustering algorithms and crossover operation of genetic algo-
rithm, and is founded on the concept of using the evolutionary processes
to select the most commonly-inherited characteristics. Our framework
proved to be available on real data set and the optimal clustering results
generated by means of our proposed method are detailed in this paper.
Experimental results demonstrate that the proposed method yields bet-
ter clustering results than applying a single best clustering algorithm.

1 Introduction

Bioinformatics is a combined interdisciplinary subject focused on the use of com-
putational techniques to assist the understanding and organization of informa-
tion associated with biological macromolecules. Genome sequencing projects and
high-throughput technologies, like microarray experimental data, have resulted
in a tremendous amount of information-rich data [4], [6].

Data mining techniques have been used extensively as approaches to uncover
interesting patterns from large databases [1]. Of these, clustering analysis is one
of the most important approaches, because it groups elements in a data set in
terms of their similarities and does not require class label information. Genomic
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researchers are willing to apply clustering algorithms to gain better genetic un-
derstanding and biological information in the bio-data, because most bio-data
are associated with insufficient prior knowledge. However, clustering techniques
can be applied to analyze bio-data with their different characteristics. The chal-
lenge selecting the best algorithm, because variety clustering methods often lead
to inconsistent results due to their own methodological bias and varying function
criteria [12], [13]. In this paper, we describe a novel approach that digresses from
using a single clustering algorithm for bio-data analysis.

The clustering ensemble problem recently has been introduced that partitions
a set of objects without accessing its original features. This process demonstrated
usefulness in improving the scalability and reliability of cluster results [5]. Rather
than merely selecting a winning partition, we want to show that combining
the clustering results of different clustering algorithms yields a better clustering
solution than selecting results from a single clustering process alone. We also
show a new heterogeneous clustering ensemble (HCE) method based on a genetic
algorithm (GA) that combines different clustering results from diverse clustering
algorithms. The use of GA is a probabilistic search approach that is founded on
the concepts of evolutionary processes. Hence, we used GA approach to further
improve clustering results in a HCE problem.

The paper is organized as follows. The prior clustering ensemble methods are
reviewed in Section 2, along with a description of combined methods, a review
of the importance of clustering results and a presentation of reasons to consider
applying GA. Section 3 explains the proposed HCE method based on GA for
bio-data applications. Section 4 reviews significant experimental results obtained
by applying the proposed method. Finally, section 5 contains concluding remarks
and future research ideas.

2 Related Works and Background

Generating high quality cluster results is a challenging problem in bio-data
analysis because of the inherent noise that exists in experimental data and the
inconsistency that exists among the different clustering algorithms. In the past,
clustering analysis often has repeated execution of a clustering procedure, fol-
lowed by selection of an individual solution that maximizes a user-defined crite-
rion [2]. However, recent research has shown that combining of clustering results
often yields better results.

Clustering ensemble techniques have recently been successfully applied to in-
crease the accuracy and stability of classification in data mining [3], [10]. That
being said, it remains difficult to say which clustering result is best because the
same algorithm can lead to different results as a result of various repetitions
and random initialization. The goal of cluster ensemble methods is to combine
the results of multiple clustering algorithms to obtain higher-quality and more
robust cluster results [8], [9]. One of the major issues of clustering ensemble
is how to combine different clustering results. Previous studies regulated clus-
tering results from clustering algorithms into the same number of clusters [13].
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However, directly combining the same number of clustering results cannot gen-
erate a meaningful result. Therefore, a new mechanism to combine the different
numbers of cluster results is needed to obtain better clustering results.

In this paper, we assume that effectively combining of clustering algorithms is
an important method to improve cluster quality. We have focused on optimally
exploiting the information provided by a collection of different clustering results
by combining them into one final result, using a variety of methods. Applying
GA is highly advantages for tasks requiring optimization and is highly effective
in any situation in which many inputs (variables) interact to produce a large
number of possible outputs (solutions) [8]. GA constitutes search method that
also can be used both for solving problems and modeling evolutionary systems.
Since it is heuristic, on one can know if the solution is totally accurate. However,
most scientific problems are addressed via estimates, rather than assuming 100%
accuracy.

Approach methods using GA can be classified broadly into two basic cate-
gories. The first category consists of generational GA that uses typical parame-
ters such as roulette selection with elitism. This is a method by which the fittest
potential parents are selected from a population; however, this does not guaran-
tee that the fittest member proceeds to the next generation. The second method
is the steady-state genetic algorithm that selects two individual parents by rank
selection then combines them to produce one offspring, thereby replacing the
worst characteristics (or traits) of a population with better characteristics. Un-
fortunately, the steady-state GA method has the potential of premature conver-
gence, which occurs by quickly converging the solution set. The major difference
between steady-state and generational GAs is that, for each parent of the popu-
lation generated in the generational GA, there are two parents selected by means
of the steady state method. Consequently, selection drifts appear twice as fast
within a steady-state GA because this method first determines rank in the pop-
ulation and then every member receives fitness from as a result of this ranking.

Combining the strengths of the various methods counteracts the weaknesses
of each system. Therefore, in this paper, we compromised with these two meth-
ods that first determined ranks of members and selected two parents for using
crossover operation according to highly-overlapped objects.

3 Methods

In this section, the experimental data and methods applied in this paper are
explained in detail. The overall experimental framework is illustrated in Figure 1.

3.1 Data

In this paper, CAMDA (Critical Assessment of Techniques for Microarray Data
Analysis) 2006 conference data set (http://www.camda.duke.edu/camda06/
datasets) were used in the current study as data set for the application of the pro-
posed method. This data set is derived from the CDC (Center for Disease Control
and Prevention) chronic fatigue syndrome (CFS) research group and contains
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Fig. 1. Flowchart of the experimental method. (A) Apply the different types of al-
gorithms. (B) Generate different clustering results by means of these algorithms. (C)
Combine the different numbers of clustering results based on GA.

microarray, proteomics, single nucleotide polymorphism (SNP) and clinical data.
In our experiments, two categories of data, microarray and clinical, were used
for application and verification. The first microarray data set is a single-channel
experimental data set that is composed of 20,160 genes using DNA from 177
patients. The second data set is classified 227 patients into three CFS patient
subgroups (categorized by degree of clinical severity- least, middle and worst)
from the CDC human subjects committee. Prior to analysis, we deal with miss-
ing values by assuming that the ratio of expression of given genes is greater
than that of background intensity among microarray data, and we replaced the
missing values by means of the k -nearest neighbor (kNN) method. In addition,
we created a final experimental data set consisting of 19,592 genes from 169
patients; this was done by removing repeats and controls after transforming to
a logarithmic ratio.

To estimate the effectiveness of the proposed method, we analyzed from 118
patient data set, which includes identical partitions about a broad range of clini-
cal severity and microarray data, and compared our multi-dimensional clustering
technique with other single clustering approaches.

CFS is a syndrome that is diagnosed on the basis of classification criteria
that, mostly, are highly subjective. The illness has no diagnostic clinical signs
or laboratory abnormalities, and it is unclear if it represents a single entity or a
spectrum of many. Prior analyses into CFS pathogenesis have not yield further
insights into the nature of this condition [7], [11]. Our own previous attempts at
analysis, to data, have not yielded further insights into CFS pathogenesis either.
An objective of the current study was to observe how our multi-dimensional
application method deals with a condition like CFS, in which both the clinical
parameters and the pathogenesis of disease is unclear. Recall that we propose to
combine the strengths of different clustering algorithms to offset the weaknesses
of any single algorithm.
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3.2 HCE Method Based on GA Operation

Based on the work presented in Section 2, we proposed a HCE method based
on GA operations to achieve optimization between different types of algorithms,
Ki, and different numbers of clustering results, Cj .

The proposed HCE method must be differentiated from previous ensemble
approaches. First, previous methods referred to the importance of ensemble al-
gorithms but they were methods that did not consider the characteristics of each
algorithm and dataset. Therefore, the methods fixed clustering results with the
same number of clustering algorithms. In addition, highly-overlapped clustering
results were assumed to indicate the final clustering result among these Cj . It
goes without saying that papers applying different numbers of cluster results
existed, but these investigators invariably searched for the optimal cluster num-
ber as well and reapplied the cluster number to all algorithms as a parameter.

Algorithm. HCE method based on GA operation

Input :

(1) The data set of N data points D = X1, X2,.., XN

(2) A set of clustering algorithms Ki

- i : the number of clustering algorithms available for analysis
(3) The cluster numbers Cj

- the Ki generates different cluster numbers Cj for the data set D
(4) The clustering result is S= {Sk1cj , Sk2cj ,....., Skicj}

- Skicj are clustering results consisting of Cj numbers of the ith algorithm

Output :
The optimal clustering result on the data set D

1. Run clustering algorithm Ki on the D
2. Construct a disjoint non-empty subsets, SM (g) with only 2 elements, from

the clustering result S
3. Iterate n until convergence (permute the clustering result of the data every

iteration) :
3.1 Compute fitness F (t) to select two parents/subsets from SM (g)

3.2 Crossover two parents
- compare between the first parent clusters and the second parent

clusters
- use the first parent to replace the cluster of the second parent, which

has the largest number of highly-overlapped objects
- repeat once by borrowing a cluster from the second parent

3.3 Replace parents by offspring from SM (g)
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Second, prior ensemble methods generally selected one best algorithm among ap-
plication algorithms and indicated clustering results using this one application.
We wish to address both of these problems in this paper.

The premise of our proposed HCE method based on GA operation is as fol-
lows. Different types of clustering algorithms initially are applied to the data.
We then generate optimal clustering result sets by means of multiple crossover
repetitions based on GA, so as to generate different clustering results. GA is
a probabilistic search approach that is founded on the concept of evolutionary
processes [8] and applied to further improve clustering results in our method.
Our proposed algorithm, HCE method based on GA operation, is outlined as
follows. In the current experiment, we aim to find associations between patients.
Therefore, the input data of this algorithm executed a vector for each gene base
on patients (samples). The output shows similar patient clusters for CFS.

The first stage of the algorithm is applying different types of clustering al-
gorithms to the input data. From that result, we construct SM (g), a disjointed
non-empty subset as a pair with only two elements from clustering results, S,
of different clustering algorithms. The third stage is the GA application stage
of the HCE method. We selected two parents as a couple, which has the largest
number of highly-overlapped objects to fitness function F (t) for crossover op-
eration within the population SM (g). In clustering analysis, the objective of
the crossover operation is to produce offspring from two parents such that the
offspring inherit as much meaningful parental information as possible. That is,
the clustering results convey important information and we need to find a way
to effectively transmit meaningful information from parents onto their offspring.
However, most traditional crossover operators were designed to deal with objects
traits rather than clusters traits.

Hence, we present a novel crossover operation using data gleaned from multi-
ple clustering processes, so as to exchange meaningful information among clusters
efficiently and effectively. Our selection and use of fitness operation is elaborated
in Section 3.3. In the 3.2 stage, the prior process is repeated by replacing two
parents of the population to generate offspring after the crossover operation until
an optimal SM (g) is formed.

The reason we used GA is that it allows for selection of more reliable cluster-
ing results and better extraction of optimal clustering. The algorithm replaces
different clustering results by allowing the fitness function to identify similar
cluster data subsets, dependent on the degree of influence that data should has
on optimal final clustering. This fitness operation provides prior conditions by
which to select two parents among clustering results from different algorithms.

3.3 Crossover Operation

We applied three clustering algorithms. To implement the initial population and
comparison with existing algorithms, we applied k -means, hierarchical methods
and principle component analysis (PCA) based clustering algorithm. The more
complementary clustering algorithms also can be added without any changes to
the architecture of the proposed framework. Thus far, we generated a population
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Fig. 2. Crossover operation to exchange the clustering results

totaling nine parents. That is, we created three different clustering results via
the iteration and change of clusters k (3, 4 and 5) using k -means. Subsequently,
the remaining two clustering algorithms were applied to yield three different
clustering results.

We took the nine total different clustering results, generated by means of
three clustering algorithms, and combined them with our proposed method to
generate a final cluster results. We first computed the fitness function, which
selects two parents, and briefly composed disjoint non-empty subsets with only
two elements among nine different clustering results. For example, we can use
36 disjoint subsets with two clustering results as a pair if we have nine different
clustering results. The pair with highly-overlapped objects then generates the
selection of two parents during the crossover process stage.

Figure 2 explains a novel crossover approach. If we directly apply crossover
operations to the ensemble problem, it may be inherited without considering
clustering structures of parents, thereby eventually producing less optimal off-
spring [9]. For example, A and Kare two selected parents in the initial population
(Fig. 2). One parent has three clustering results (A1, A2, and A3) and the other
five clustering results (K1, K2, K3, K4, and K5). First, we select one cluster, say
cluster A1, from the first parent and see that it has more highly-overlapped traits
than the other two clusters (A2 and A3) when compared to clusters of the second
parent, K. Then, we use A1 to replace a cluster from the second parent, say K5,
which has the largest number of similarities to A1 (objects 7, 27, 39, 58, 63, 65,
71 and 84). With replacement, those objects in A1 (objects 63, 71 and 84) do not
appear as overlapping objects in K5, for example. However, object 63 and 84 in
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A1 appear as objects in K2 and K4, respectively. Consequently, objects 63 and
84 are removed so that each object belongs only to one cluster. The remaining
objects in A1 (object 71) are taken from K5 until these objects do not appear in
any other cluster. Finally, the new clustering solution is represented by the first
offspring possessing traits K1, K2, K3, K4 and revised A1. This crossover oper-
ation is repeated once by selecting a cluster from the second parent to generate
the second offspring. Figure 2 shows the third stage of the proposed algorithm.
Two parents are replaced by new offspring in the population in the final stage.
After the replacement, we again compute fitness with the disjoint non-empty
subsets using only two elements; then determine a pair of new candidates for the
following parent selection; and finally repeat the stages above.

These procedures exchanges cluster traits of different clustering results and
objects with highly-overlapped and meaningful information being inherited by
offspring until finally we achieve an optimal final clustering result. Hence, we
believe that the crossover operation we propose is a stable approach because
of the invariable population of subsets and the process of combining highly-
overlapped objects.

4 Experimental Results

The clinical data set from CAMDA is classified into three cluster groups: least,
middle, and worst (most symptomatic) for CFS. In this paper, the AVADIS anal-
ysis tool (http://avadis.strandgenomics.com) was applied to different clustering
algorithms and several parameters of the AVADIS analysis tool were applied to
generate several clustering results. We also compared the results generated using
AVADIS to those of our proposed method.

For data analysis and validity testing, we used 118 patients who were in
common between the clinical data and microarray data sets. Table 1 represents
the true classified clusters of the clinical data set.

Table 1. Classified clusters of the clinical data set. L, M and W mean least symp-
tomatic, moderately symptomatic and most symptomatic patients number for CFS,
respectively.

L M W Total
42 51 25 118

Using the proposed algorithm, we discovered a final optimal result was com-
posed of four clusters (cluster set # in Table 2) that have the largest number of
fitness values among 36 disjoint subsets by means of 10,000 crossover operation
repetitions. Using different fitness operations, it goes without saying that differ-
ent cluster results may be captured. Four cluster results, those generated using
three clustering algorithms and our proposed method, are compared.

Table 2 lists the comparisons between four clusters created by our method
and four clusters of three clustering algorithms created by the parameter change.
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Table 2. Clustering results comparison of the three clustering algorithms and HCE
method based on GA

Microarray data set for CFS Clustering Results
Method Cluster set # Algorithms True clusters

KM Cluster 1 M W
Cluster 2 M W
Cluster 3 L W
Cluster 4 L L

HC Cluster 1 L M
Cluster 2 L L
Cluster 3 M W
Cluster 4 L W

PCA Cluster 1 M M
Cluster 2 L W
Cluster 3 M W
Cluster 4 M M

HCE Cluster 1 L L/M
Cluster 2 M M
Cluster 3 M M/W
Cluster 4 L L

KM, HC, PCA and HCE mean k -means, hierarchical clustering, PCA-based
clustering and our proposed method, respectively.

This demonstrate that the results using a clustering algorithm when we have
no previously defined clusters, are not consistent with the classified three symp-
tomatic of the clinical data set than the proposed method. To validity testing, we
chose to the representative symptomatic among the largest number of similar-
ities. The similar representative value between the proposed method and three
different algorithms are written to bold characters. However, we discover that
our HCE method mostly agrees with the clusters classified by the clinical data.
Here, L/M and M/W are said to be clustering in the same ratio as the number
of patients classified as least/middle and middle/worst.

The proposed algorithm shows that four clusters have the best fitness in dis-
joint non-empty subsets with two elements, and we compared them to different
clustering results with four clusters. However, the clustering results of our pro-
posed algorithm also outperformed three and five cluster results of the remaining
clustering results, even though their fitness is not the best.

5 Conclusions and Future Work

Since a huge amount of gene expression data is produced by microarray ex-
periments, a clustering technique that combines similar samples can be highly
effective. The combined cluster results can find better clustering results than
those obtained when using single cluster results alone.
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In this paper, we considered characteristics of bio-data and clustering algo-
rithms to present optimal clustering results by combining different types of clus-
tering algorithms. Additionally, we proposed a HCE approach to generate optimal
clusters, by newly-designing and applying the crossover operation of the genetic
algorithm. The proposed method appears useful for understanding clustering re-
sults by combining several clustering algorithms for a related bio-data set.

Experiments with real microarray data show that this method can search for
possible solutions effectively and improve the effectiveness of cluster analysis
using crossover operations, which generate clusters of highly-overlapped traits.

We also observed that the proposed HCE method increases performance as
more repetitions are added. We need not remove objects for preprocessing and
fix the same cluster numbers to the first application step because the genetic
algorithm is rapidly executed. Therefore, it can extract more reliable results than
other clustering algorithms. In addition, clustering algorithm is an unsupervised
learning method that appears useful in identifying experimental results in the
absence of prior knowledge. Thus, combining different clustering algorithms by
considering bio-data characteristics and analysis of clustering results also can
overcome the instability inherent in clustering algorithm problems.

The experimental methods introduced in this paper suggest several avenues
for future research. One direction would be to optimize cluster results by com-
bining different bio-data sources in multi-source bio-data sets. Another would be
applying different clustering algorithms under the assumption of no prior knowl-
edge, since only one data source is used for the fitness operation. Therefore, we
plan to design a proper fitness operation and novel analysis method for analysis
of combined multi-source bio-data. Lastly, another important task would be to
develop a theoretically and experimentally justified verification system to handle
disparate data.
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Abstract. A major goal of clinical proteomics is the identification of protein 
biomarkers from mass spectral analyses of fairly easily obtainable samples such 
as blood serum, urine or cerebrospinal fluid from patient populations. It is 
hoped that such protein biomarkers can be utilized for early detection of disease 
and examined further for potential therapeutic use. In this paper, we present the 
process for successful discovery of biomarkers that are indicators of a chronic 
neurodegenerative disease of motor neurons, called Amyotrophic Lateral Scle-
rosis; from application of rule learning to the analysis of proteomic mass spec-
tra from cerebrospinal fluid samples. We have implemented a wrapper-based 
rule learning framework within which the massive number of features that ac-
cumulate from mass spectral analyses of clinical samples can be evaluated by 
repeated invocation of a rule learner. Our framework facilitates evidence gath-
ering as indicated in this case study, and can speed up disease-specific  
biomarker discovery from clinical proteomic mass spectra. 

1   Introduction 

It is widely believed that early detection of fatal and chronic diseases leads to better 
disease-management options for the diagnosed patient. High-throughput proteomic 
mass spectral technologies are rapidly becoming popular choices for this task. In clini-
cal proteomics, biological samples such as blood serum or cerebrospinal fluid (CSF) 
are collected from populations of patients with and without a particular disease; and 
analyzed to create protein and peptide expression profiles for that disease. Apart from 
disease profiling, an enormous challenge in biomedical research involves the search for 
a set of protein biomarkers that can be used for early identification of the disease. Bio-
markers are biological molecules that are indicators of physiologic state and also of 
change during a disease process. The utility of a biomarker lies in its ability to provide 
an early indication of the disease, to monitor disease progression, to provide ease of de-
tection, and/or to provide a factor measurable across populations [1]. The problem of 
accurate detection of biomarkers from a multitude of data is therefore of utmost sig-
nificance to biomedical researchers. The number of samples is often very small in 
comparison to the number of features present within the mass spectrum of each  
sample, making it difficult to draw meaningful conclusions from the data.  
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Mass spectrometric (MS) technology now allows for the simultaneous resolution of 
many tens of thousands of protein and peptide species in body fluids, leading to a 
revolution in protein-based diagnostics [2]. A recent MS-based technology is called 
surface-enhanced laser desorption/ionization (SELDI), where protein chip arrays are 
used to provide a variety of surface chemistries for researchers to optimize pro-
tein/peptide segregation, capture and analysis. The chemistries on these chips include 
classical chromatographic surfaces such as hydrophobic for reversed-phase capture, 
cation and anion exchange surfaces, and immobilized metal affinity capture (IMAC) 
for capturing metal-binding (e.g., transcription factors and other zinc/copper/nickel-
binding) proteins. Bound proteins are liberated from the chips by ionization. Mass 
separation is achieved by Time-of-Flight (TOF). The mass spectrometer measures the 
mass-to-charge (m/z) of the protein or peptide (it is hoped that whole proteins are be-
ing ionized). The mass spectrum from analysis of each sample then comprises of tens 
of thousands of m/z values for each of which a relative abundance measure is as-
signed depending on the number of analytes detected at each m/z value based on the 
time-of-flight.  

ProteinChip SELDI-MS technology has been utilized in several recent studies 
aimed at disease profiling and identification of biomarkers [3-7]. Software techniques 
that can analyze these massive mass spectral datasets are fast accumulating [8, 9]. A 
recent review of the literature on promising results from surface-enhanced laser de-
sorption/ionisation time of flight (SELDI-TOF-MS) for cancer proteomics examines 
proteomic profiles of control and disease states to find biomarkers for early diagnosis 
[10]. In this paper, we present a rule-based analysis of a small sample dataset obtained 
from SELDI-TOF-MS analysis of cerebrospinal fluid (CSF) samples leading to identi-
fication of three biomarkers for Amyotrophic Lateral Sclerosis (ALS) in CSF. Cur-
rently in the United States, there is only one FDA approved drug that prolongs life by 2 
to 3 months for this debilitating motor neuron disease. The median survival rate for 
diagnosed patients with this disease is three to five years. Our analysis comprised of 
proteins/peptides only in the low molecular weight range between 2 and 20 kilo 
daltons (kDa). The data from SELDI-TOF-MS is considered to be more accurate for 
this range of molecular weight. 

2   Methods and Dataset 

The overall framework for biomarker discovery that we adopted is presented in  
Figure 1. Clinical cerebrospinal fluid (CSF) samples obtained by lumbar puncture 
from control subjects and patients with ALS are subjected to mass spectral analysis 
using Ciphergen ProteinChips (Ciphergen Biosystems, Inc. Palo Alto, CA, USA). The 
good quality spectral data from the chips are then analyzed using wrapper-based rule 
learning and other statistical methods. The results along with the rule-based models 
are then examined by both computational and experimental users to gather evidence 
for potential biomarkers as indicated by the m/z values. Once sufficient evidence is 
obtained, identification of the specific proteins or peptides is carried out by enriching 
peaks and separating proteins using ion-exchange chromatography. The eluted pro-
teins are digested with an enzyme called trypsin that cuts proteins and peptides  
in specific places. The  tryptic  digests  are  then  subjected to two methods  of  protein  
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Fig. 1. Overview of our methodology for biomarker discovery 

identification – Peptide Mass Fingerprinting (PMF) and Peptide sequencing using 
tandem mass spectrometry (MS-MS). Peptide Mass Fingerprints are obtained by sub-
jecting the tryptic digests to mass spectrometry by MALDI (matrix-assisted laser 
desoption/ionization) technology, and the ProFound protein database search engine 
was used  to identify proteins that match the experimental mass spectrum. To confirm 
the identity of the proteins thus identified, the typtic fragments for each biomarker is 
analyzed by peptide sequencing using QSTAR tandem MS (MS-MS) with a Pro-
teinChip Interface (Applied Biosystems Inc., Foster City, CA, USA). Furthermore, to 
validate the identities of the discovered protein biomarkers, samples from a separate 
cohort of subjects are used in conjunction with immunoblotting and immunohisto-
chemistry. Detailed experimental analyses were previously described [11]. In this  
paper, we focus on the rule learning aspects as they pertain to influencing the decision 
for which m/z values are likely to add value to predictive biomarker panels for ALS. 

2.1   Rule Induction and Rule Learner (RL) 

Rule induction constitutes the learning of a set of classification rules (model) from 
training data containing a set of subjects (or objects), whose features are described as 
(attribute, value) pairs. Each training example is associated with a class label. This is 
a well studied problem in supervised machine learning and data mining research, and 
various kinds of rule induction algorithms have been developed over the years such as 
C4.5, CART and RIPPER [12, 13]. Most data mining approaches to the induction of 
rules falls into two categories: divide-and-conquer (used by decision tree approaches 
such as C4.5 and CART) and separate-and-conquer (the set covering approach used 
by RIPPER). The former recursively partitions the instance space of training exam-
ples until the remaining small instance space is explained by the model; while the lat-
ter induces one rule at a time and removes instances covered by this rule until no 
more rules can be generated. Such methods suffer from the ‘splitting problem’ caused 
by the dwindling sample size resulting in creation of classification rules with lesser 
statistical support. Our rule learner (RL) described below is particularly well suited 
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for clinical applications because it samples the instance space with replacement, 
thereby finding classification rules that have good support in the training data. An-
other advantage of RL is that it can be agnostic, in that class predictions on test data 
can be withheld for those cases that yield insufficient evidence for any of the classes 
under consideration. 

The RL program [14] views inductive learning as a knowledge-based problem 
solving activity that could be implemented in the heuristic beam search paradigm. It 
was first used for predicting mass spectra of complex organic molecules [15]. RL cre-
ates and searches possible rules by successive specialization, guided by data in a 
training set and by prior knowledge about the data (e.g., clinical diagnosis or symp-
toms) to define diagnostic rules [16]. RL learns a set of conditional rules of the form 
IF-THEN or P1,..,Pk => C, where the left-hand side (LHS) are premise clauses that de-
scribe tests on values of one or more attributes of the training set (e.g., spectral 
peaks). The concept conclusion (C) is an assertion that any subject with features 
matching the conditions on the LHS of rule is a member of a class (e.g., ALS). 

0. ((sax2404.9228 in 0.335..0.516)) ==>(GROUP =
Control)

  CF=0.91, TP=12, FP=0, Pos=22,Neg=18
1. ((sax13647.294 in 0.185..0.335)) ==> (GROUP =
Control)

  CF=0.91, TP=12, FP=0, Pos=22,Neg=18
2. ((zn8931.1149 in 0.274..0.482)) ==> (GROUP =
 Control)

   CF=0.91,TP=12, FP=0, Pos=22, Neg=18 
3. ((zn3010.6341 in 0.302..0.481)) ==> (GROUP = ALS)

   CF=0.873, TP=10, FP=0,Pos=18,Neg=22
4. ((sax6879.6187 in -0.113..0.091)) ==> (GROUP = 
ALS)

 CF=0.862, TP=9, FP=0, Pos=18,Neg=22
5. ((zn3415.6208 in 0.332..0.488)) ==> (GROUP = ALS)

 CF=0.862, TP=9, FP=0, Pos=18,Neg=22
6. ((sax2459.2504 in 0.731..1.018)) ==> (GROUP =
ALS)

   CF=0.862, TP=9, FP=0, Pos=18,Neg=22 
7. ((zn19805.987 in 0.051..0.251)) ==> (GROUP = ALS)

   CF=0.764, p= 0.033, TP=4,FP=0,Pos=18, Neg=22 

{ NIL ALS,
NIL  Control } 

{(mz410 in 2-low ALS), …,(mz410
in 1-low  ALS),..,
 (mz410 in 2-low  Control),……}

cf=1.0;tp=3;fp=0,…

{(mz410 in 2-low  & mz510 in 4-high
 Control), ……..}

One-step
specializations
for each rule
on sorted beam

Final set of rules 

 

Fig. 2. (Left) An example of beam search in RL. Each rule on the beam has associated statistics 
from training data. (Right) A sample final rule set. cf is certainty factor, p-value for rules 0 to 6 
is less than 0.001 (not shown), tp and fp are the number of positive and negative training exam-
ples covered by the rule. 

RL learns predictive patterns by starting from rules with a single feature and add-
ing one feature at a time to partial rules that look most promising. Each partial rule is 
matched against the training cases to see how many of the positive cases are correctly 
predicted and how many of the negative cases are incorrectly predicted, thus provid-
ing statistical guidance to the search. Rules are ordered according to statistical signifi-
cance and placed on the beam according to rank. The beam width is specified apriori 
and is a heuristic by which unpromising partial rules are eliminated from the search. 



 Rule Learning for Disease-Specific Biomarker Discovery 97 

 

A new rule is considered for placement on the beam as long as it matches at least one 
new training instance that is currently not matched by other rules on the beam (that is, 
the partial model). 

Figure 2 depicts an example of RL’s beam search with promising partial rules on 
the beam being specialized successively by adding conjuncts. In the example, mz410 
refers to an attribute whose m/z value is 410 daltons;  2-low refers to its relative abun-
dance value being 2 standard deviations below the mean. Since the relative abundance 
of ionized analytes is a continuous valued attribute, RL discretizes its range based on 
an assumption of a normal distribution; and bins the values of each data item based  
on the mean and number of standard deviations away from the mean. 

The need for biases in learning generalizations is well described in [17]. Bias refers 
to the set of assumptions made by the learner regarding the target function in order to 
be able to generalize from observed training instances and make predictions on new 
instances. This includes choice of the hypothesis space, which needs to be large 
enough to contain a solution to the problem at hand, yet small enough to ensure good 
generalization [17]. Bias space search is the search for an appropriate learning bias 
[18]. It is called inductive bias when learning happens through inductive generaliza-
tion.  Some learners, such as RL, have parameters that allow some variation in their 
inductive bias. The set of parameter combinations is the bias space of the learner. RL 
has 12 parameters that comprise its bias space. The main four are: 

1. Certainty Factor (CF) Function: A function that computes the degree of be-
lief of a rule. It is used for evaluating rules and ranking them on the beam. 
Several choices of certainty factor functions are available, such as PPV or 
positive predictive value, PPV + Yates’ correction, PPV + normalization, 
signal/noise ratio, Laplace accuracy estimate and Laplace + bias toward short 
rules. 

2. Minimum CF: The minimum CF value which rules must have in order to 
stay on the beam. 

3. Beam Width: The number of rules kept on the beam at each iteration after all 
the rules are evaluated. Default value is 1000. 

4. Maximum Number of Conjuncts: The maximum number of attribute-value 
pairs in any rule’s condition.  This is a very useful parameter as it limits the 
cardinality of non-linear relationships to be examined. 

RL can perform automatic bias search on parts of the bias space. For each bias, 
learning and testing is done using 5-fold cross validation. The model with the greatest 
Fisher exact test score and the bias RL used to learn it are shown to the user. What 
part of the bias space is explored depends on a user-definable parameter exhaustive-
ness (values are low, medium or high). A low value implies a coarser search, with 
fewer values tried for the minimum CF and maximum number of conjuncts parame-
ters. Default settings imply for low exhaustiveness, a search over 21 parameter com-
binations with 105 models learned over 5-fold cross-validation; 105 parameter  
combinations creating 525 models for medium; and 504 parameter combinations cre-
ating 2520 models for high exhaustiveness. Bias search has a running time tbs(n, a, v) 
~= tx(n, a, v) m, where tx(n, a, v) is the time for running x-fold cross-validation on n 
data with a attributes with an average of v values, and m is the number of models  
generated during the bias search. 
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Once a model is learned, it can be applied to the test set using different criteria for 
classification. One commonly used criterion is “weighted voting”, where the predic-
tions on the test data are made by weighting each matching rule by its certainty factor. 
Another criterion that can be used is to apply the matching rule with the highest cer-
tainty factor value. These criteria perform automatic conflict resolution among rules. 

2.2   RL-Wrap 

Due to the large number of attributes in mass spectral data, we developed and imple-
mented an attribute selection method based on a greedy wrapper around RL, called 
RL-Wrap. The algorithm is as follows: 

Phase I: Select Attributes 
1. Randomly partition the set of attributes into a specified number of attribute 

subsets {Ai}. Ai corresponds to a section of data. 
2. Find a bias for feature selection, by performing bias space search on an 

arbitrary section Ai of training data. 
3. For each section Ai: 

a. Mi  = model learned on Ai, using the bias found in (2) 
b. Select interesting attributes into Ii 
        Ii  = {attributes that appeared in Mi} 
c. Combine Ii with all interesting attributes I. (I = I U Ii) 

Phase II: Learn final model 
4. Find a bias for learning final model, by performing bias space search on the 

training data and selected attributes I 
5. Learn a model M on the training data with the bias found in (4) 

Phase III: Apply model M to test data 
In our current implementation, Ii in (step 3b) consists of all attributes referred to by 
the learned model, while the Combine step (3c) is the union of all Ii. The number of 
attribute subsets (or equivalently the size K of the maximal subset) is specified by the 
user; the default size is 1000 attributes. A Java implementation of RL is used for 
learning models from the training data that are subsequently applied to the test data. 

2.2.1   Attribute Interestingness Criteria 
We have identified three heuristic interestingness criteria for attributes in a rule-based 
model, described below. RL-Wrap displays information regarding these criteria to 
help the user evaluate sets of attributes. 

(a) Sensitivity analysis by removing attribute(s): One heuristic interestingness 
measure we have used is based on testing how sensitive the model is to removing one 
or more attributes. Given a rule-based classification model, the attribute is removed 
from any rule whose condition contains the attribute (thus generalizing the rule), and 
if that leads to an empty condition, the rule is completely ignored. If the performance 
greatly degrades, this suggests that the attribute is very important for the model. The 
measures of classification performance we used in this study were classification accu-
racy, sensitivity, and specificity. Results from sensitivity analysis on models are  
presented to the user. In the current version of RL-Wrap, combinations of up to five 
attributes can be removed from each model to perform sensitivity analysis. 
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(b) Proportion correct use (PCU) in rules: The Proportion Correct Use (PCU) in-
terestingness criterion prefers attributes appearing in rules that make many correct (c) 
and few incorrect (w) predictions on the test data. This measure of interestingness  
of an attribute A can be described as, I(A) = c/(c+w+1) where c is the total number of 
correct predictions on the test set of rules that refer to A, and w is the total number  
of incorrect predictions on the test set of rules that refer to A. 

(c) Number of appearances in models: In addition, we have used an interestingness 
criterion for an attribute in a set of models. The interestingness I of an attribute A, I(A) 
= k/n, where k is the number of models in which the attribute appears, and n is the  
total number of models. 

2.3   Dataset: Amyotrophic Lateral Sclerosis  

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenera-
tive disease with complex genetic contribution that is difficult to diagnose at the early 
stages. Samples of cerebrospinal fluid (CSF) were obtained by lumbar puncture from 
54 individuals – 23 patients with ALS and 31 negative controls (initial dataset had 34 
training samples and 20 blinded samples used as testing). CSF was used since this 
fluid circulates within the nervous system and is therefore in proximity to cells  
affected by the disease. Therefore CSF likely harbors a high concentration of potential 
biomarkers and represents an excellent starting material for proteomic study. The  
data for each spectrum consisted of 18,396 SELDI-TOF points. Two Ciphergen  
ProteinChips [6] were used, strong anion exchange (SAX2) and zinc cation-loaded 
IMAC (Zn-IMAC30). These chips have different binding affinities and capture differ-
ent subsets of proteins/peptides from the CSF.  The variability of replicate experi-
ments was well within 10%; therefore, we only analyze data for each sample from one 
chip each of SAX-2 and Zn-IMAC30. 

We combined the data from the two chips for each sample, since they capture dif-
ferent proteins and peptides. Previous analyses [19] indicated better results from 
combined data, indicating that a disease-specific biomarker panel would need to be 
constructed based on evidence gathered from different sources. Each mass spectrum 
ranged from 2000.1936 kDa to 19964.553 kDa, for a total of 36778 input attributes 
per sample. The data were normalized by scaling the values for each m/z for all sam-
ples, to the interval [0, 1] as in ([20]).  That is, the relative amplitude of the intensity 
at each m/z identity in the spectral data was normalized against the most intense and 
the least intense values in the data stream according to the formula: NV = (V - Min) / 
(Max - Min), where NV is the normalized value, V the raw value, Min the minimum 
intensity and Max the maximum intensity. 

3   Results  

An initial analysis using the wrapper approach on a training set of 34 subjects and 20 
blinded test samples resulted in 496 features being identified as interesting attributes 
of which 264 m/z values were from SAX2 chip and 232 m/z values from the Zn-
IMAC30 chip. These features were used as input for the final RL run that resulted in a 
model containing 10 rules (with total of 10 features). These ten rules were then  



100 V. Gopalakrishnan et al. 

 

applied to make predictions on the blinded test set of 20 samples that included four 
healthy subjects and six neurologic disease controls. Eight of the 10 ALS samples in 
the test set were correctly identified, as also six of the 10 control subjects. RL made 
predictions for 19 of the 20, resulting in overall coverage of 95%, with 74% accuracy, 
80% sensitivity and 60% specificity. The same training data were analyzed using Ci-
phergen’s Biowizard software that implements a version of CART [21]. This resulted 
in a decision tree model containing 9 features. Since the software would not permit ap-
plication of the model to blinded test data, we utilized the version of CART available 
in Clementine software package (SPSS, Inc.) to learn a model with just the 9 m/z fea-
tures, and apply it to the 20 test samples. This resulted in complete coverage of the test 
data with 65% accuracy, 30% sensitivity and 100% specificity. We also gave the 9 m/z 
features directly to the two-step clustering program in Clementine, and obtained 75% 
accuracy, 60% sensitivity and 90% specificity based on separation of the test data.  

Additionally, the Ciphergen clustering software was also used to perform a uni-
variate analysis of both the SAX2 and Zn-IMAC30 datasets to identify m/z’s, whose 
relative abundances were statistically significantly different between the ALS and 
Control CSF samples. A non-parameteric Mann Whitney test was used on 366 m/z 
values that were autodetected by the Biowizard software to have differential signal in-
tensities in ALS and Control spectra. This yielded 15 significant m/z’s from each of 
the two chips (p < 0.01). One m/z value (13.38 kDa) that was detected as significant 
in all of the above analyses has been identified and validated experimentally. 

Next, we combined all the samples to get 54, and from these we removed 2 sam-
ples that exhibited poor quality spectra that had low signal-to-noise ratios. From the 
remaining 52 samples, we randomly picked 12 as test examples; and used the re-
maining 40 as training data. The test examples had 7 ALS and 5 Control. We ran 
RL-Wrap twelve times on the training data, with different sub-sampling of the fea-
ture subsets. The best model had 12 features in the rules. This model yielded 91% 
accuracy (11 out of 12 test subjects), 80% sensitivity and 100% specificity on test 
set. One of the m/z values (6.88 kDa) found in this model was hypothesized to be the 
doubly charged peak of one of the significant m/z’s (13.78 kDa) found in the uni-
variate analysis. Two of the m/z values (6.88 and 3.42 kDa) from this set of 12 fea-
tures have been identified and validated experimentally. One of these m/z’s (3.42 
kDa) has only been identified by our RL-Wrap method.  

In order to evaluate the overall consistency of RL-Wrap analyses, we ran RL-Wrap 
multiple times with different attribute subsetting criteria. For these analyses, we 
worked on a subset of the dataset produced by applying a univariate filter (chi-square 
value equal to zero) to remove attributes that were unlikely to be significant. This 
yielded a dataset containing 1567 attributes. We also compared RL-Wrap analyses on 
this dataset to models learned from C4.5 and RIPPER implementations available in 
the WEKA machine learning environment. Even though overall performance accura-
cies are comparable when averaged across several runs, the models produced are not. 
Particularly, because the instance space is not resampled by C4.5 and RIPPER, the 
models produced often contain only 2 or 3 features. Also, they have a rule that just 
predicts the default class. Hence, we do not report our comparison with these classifi-
cation algorithms as we believe that several highly accurate m/z’s that classify subsets 
of the instance space are missing in their models. 
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We ran RL-Wrap using 50, 100, 400 and 1000 attributes per subset and bias space 
search. The bias search parameters were Exhaustiveness=Low and 5-fold cross vali-
dation, thus each bias search iterated over 21 parameter combinations, creating 105 
models, and used an approximate 40-10 train-test split for each iteration. The RL-
Wrap algorithm selected attributes by partitioning the attribute set, learning a rule set 
on each partition, and unioning the attributes that appear in the rule sets. After the  
attributes were selected, a model was learned using bias search, again with Exhaus-
tiveness=Low and 5 fold cross-validation. 

3.1   Sensitivity Analysis 

The results from a sensitivity analysis on a model by removing all combinations of at-
tributes (up to 5 attributes) from the model and testing the reduced models on the test 
set are shown in Table 1. A model from RL-Wrap analysis constitutes a potential panel 
of biomarkers for disease classification from mass spectra. The results from this analy-
sis seem to indicate that removing one or two biomarkers from this panel may not  
result in a significant drop in classification accuracy and coverage on the test set. This 
kind of analysis reveals which biomarkers are crucial predictors on the test set, as the 
report includes which m/z (s) were dropped along with performance statistics. On other 
models, we see sharper drops in accuracy upon removing even a single m/z. 

Table 1. Sensitivity Analysis Summary. The number of attributes in the reduced model, to-
gether with the number of models that have the given number of attributes, mean accuracies of 
these models, mean coverage of the test data, and mean specificity and sensitivity of the models 
are reported. A sample of the summary produced is depicted here. Mean differences of accu-
racy, coverage and other metrics of the reduced model are reported based on the metrics  
obtained from the original unreduced model. 

# Atts in 
reduced 
model # Models 

Mean 
accuracy 

(acc) 

Mean 
acc 
Diff 

Mean 
Coverage 

(cov) 

Mean 
cov 
Diff 

Mean 
Spec 

Mean 
Spec 
Diff 

Mean 
Sens 

Mean
Sens 
Diff 

10 1 1 . .818 . .8 . .833 . 

9 10 1 . .8 -.018 .8 . .8 
-.033 

8 45 .997 -.003 .774 -.045 .787 -.013 .759 
-.074 

7 120 .991 -.009 .738 -.08 .758 -.042 .711 
-.122 

6 210 .984 -.016 .691 -.127 .713 -.087 .656 
-.178 

5 252 .976 -.024 .631 -.187 .65 -.15 .592 
-.242 

3.2   Proportion Correct Use Criterion 

The Proportion Correct Use (PCU) interestingness criterion prefers attributes appear-
ing in rules that make many correct (c) and few incorrect (w) predictions on the test 
data.  For example, one such function is  c(a) / (c(a) + w(a) + 1).   RL-Wrap  shows  c  
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Table 2. Example of attribute interestingness by Proportion Correct Use (PCU) criterion. The 
range of values (in this case normalized) that each attribute takes on in the training data are 
shown along with the number of correct and incorrect uses in prediction on the  test data. 

Attribute Min Max Mean Std Dev # Correct uses 
in predictions 

# Incorrect uses 
in predictions 

sax13682.916 
0.0 

1.0 0.27 0.24 11 . 

zn14537.848 0.0 1.0 0.34 0.26 1 1 

zn9969.4349 0.0 1.0 
0.37 0.21 

. . 

sax9556.2863 
0.0 

1.0 
0.23 

0.16 . 1 

and w for attributes in each learned model. Part of the table it generated for the final 
RLW100 (using 100 attributes per sampled subset in the first iteration) model is 
shown in Table 2, sorted by decreasing PCU.  The tables also show the minimum, 
maximum, mean and standard deviation of values in the training data. 

3.3   Number of Appearances in Models 

RL-Wrap can be run repeatedly to gather statistics regarding the number of times a par-
ticular attribute appears in the various final models generated. A sample graph plotting 
the statistics obtained from running RL-Wrap 12 times is shown in Figure 3. The mean 
accuracy and coverage of the models were .77 and .88, and the modes were .9 and 1.0. 
A total of 12 attributes appeared in the 12 models, 7 of which appeared in 10 or more 
models: SAX12280, SAX13647, SAX2459, SAX2404 and SAX6878 and Zn3010 
and Zn8931 (Figure 3).  

Next, a sensitivity analysis was performed on each model, by ignoring each attrib-
ute in turn, and recording the model's accuracy, coverage, sensitivity and specificity. 
For each attribute, the mean values of the metrics for the models with the attribute 
were compared to the mean values for those models when that attribute was ignored. 
RL-wrap automatically computes these statistics for each attribute (as also for  
attribute subsets). The two attribute interestingness criteria mostly agree on this data. 

 

Fig. 3. Plot of number of times an attribute occurred within 12 models learned from repeated  
RL-Wrap runs 
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3.4   Evidence Gathering for Site of Disease Onset  

The site of disease onset often determines disease prognosis. In our ALS dataset, we 
have clinical information about the region of disease onset. Bulbar onset is rarer and 
more rapid than limb onset. Out of 22 ALS patients, 15 were reported to have site of 
onset in the limb region, with the remaining 7 in the bulbar region. We trained RL  
using 5-fold cross validation on this small sample dataset and obtained 95% overall 
predictive accuracy. Limb onset samples were classified accurately with just 2 m/z’s. 

4   Biomarker Validation 

Three m/z values (3.42, 6.88 and 13.38 kDa) obtained from RL-Wrap analyses were 
further evaluated and the proteins were identified using experimental procedures  
described in [11]. The three proteins are believed to be: 7B2CT, a carboxy-terminal 
fragment of the neuroendocrine protein 7B2 (3.42 kDa peak); cystatin C (13.38 kDa 
peak), and the 6.88 kDa peak as a monomer of Transthyretin (TTR). We obtained a 
100% match of the sequence of the 7B2CT protein sequence with the sequences of the 
12 tryptic peptides obtained from our 3.42 kDa peak. Both Cystatin C and TTR are al-
ready known to be involved in Alzhiemer’s disease. We performed immunoblot and 
immunohistochemistry on separate cohorts of age-matched ALS and control subjects, 
using commercially available antibodies to TTR and cystatin C to validate our findings. 
TTR protein levels as measured by immunoblot predicted ALS with 70% sensitivity and 
60% specificity on a set of 20 coded test subjects. We used 14 additional CSF samples 
for the immunoblot that were from patients whose samples we had already used for 
mass spectrometry. Detailed experimental verification is described in [11]. 

5   Conclusions and Future Work 

In this paper, we show how biomarkers can be successfully identified using a rule 
learning methodology that samples the instance space of training examples with re-
placement. Even though some biomarkers have been successfully identified, the small 
number of samples from which the rule-based models have been learned for classifi-
cation of ALS leads us to believe two things: (a) it is indeed remarkable to have  
experimental identification and confirmation of protein identities, indicating that there 
are indeed biomarkers within CSF that can help identify diseases such as ALS, and 
(b) these analyses must be repeated with a lot more data in order to be able to identify 
disease-specific biomarker panels that are truly worthy of application in clinical pro-
teomics. Nevertheless, there seems to be real value in utilizing rule-based methods 
that provide easier means for evidence gathering from multitudes of features present 
within clinical proteomic mass spectra. 
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Abstract. Recently developed Serial Analysis of Gene Expression (SAGE) 
technology enables us to simultaneously quantify the expression levels of tens 
of thousands of genes in a population of cells. SAGE is better than Microarray 
in that SAGE can monitor both known and unknown genes while Microarray 
can only measure known genes. SAGE gene expression profiling based cancer 
classification is a better choice since cancers may be due to some unknown 
genes. Whereas a wide range of methods has been applied to traditional 
Microarray based cancer classification, relatively few studies have been 
done on SAGE based cancer classification. In our study we evaluate 
popular machine learning methods (SVM, Naive Bayes, Nearest Neighbor, 
C4.5 and RIPPER) for classifying cancers based on SAGE data. In order to deal 
with the high dimensional problem, we propose to use Chi-square for tag/gene 
selection. Both binary classification and multicategory classification are 
investigated. The experiments are based on two human SAGE datasets: brain 
and breast. The results show that SVM and Naive Bayes are the top-performing 
SAGE classifiers and that Chi-square based gene selection can improve the 
performance of all the five classifiers investigated. 

1   Introduction 

Serial Analysis of Gene Expression (SAGE) is a relatively new method of 
measurement for gene expression data [3] and has been used in studies of a wide 
range of biological systems [4, 5]. It identifies a short mRNA tag from each 
individual transcript and concatenates them into long DNA molecules, which are then 
sequenced. By counting these tags one can estimate, for example, the expression of 
genes in a cell. The information gained from performing this technique on a tissue 
sample is called a SAGE library. SAGE method is better than microarray technique, 
                                                           
* Corresponding author.  
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another method for measuring gene expression, in that both known and unknown the 
mRNAs in a tissue sample has a chance of being tagged and sequenced by SAGE 
while microarray can only measure the sequences of known mRNAs. This advantage 
is important, especially for cancer profiling on the gene expression level, because the 
sequence and purpose of most mRNAs has not been discovered yet. 

The large amount of SAGE data would greatly help doctors in their endeavor to 
better understand what goes on inside the human body. Since a human investigation 
of the data does not extract much meaningful information, an automated approach is 
needed. Automated classification of cancer data is crucial in making diagnoses quick, 
more reliable, and less prone to human error. However, the main challenges in the 
SAGE data classification task are the availability of a smaller number of 
libraries/samples compared to huge number of tags/genes, many of which are 
irrelevant for classification, and the noisy nature of SAGE data. Therefore, any good 
classifier needs to first remove errors, reduce the number of tags and filter out genes 
that are not strongly correlated with the cancer classes as indicated by the samples in 
the provided training data. The process of reducing the number of tags is called 
feature selection. 

Several SAGE data analysis methods have been developed, primarily for extracting 
SAGE tags and identifying differences in mRNA levels between two libraries.  
Cai Li et al. cluster the SAGE tags using a Poisson distribution approach [1]. 
Raymond T. Ng et al. cluster the SAGE libraries using the OPTICS algorithm [2]. As 
for SAGE data classification, J. Sander et al. adopt a Nearest Neighbors (NN) 
approach for binary (two-class) classification [10]. They randomly selected part of 
cancerous and normal libraries of a specific tissue as the training libraries, and then 
randomly picked a testing library from the remaining ones. They try to predict 
whether the testing library is normal or cancerous based on the NN classifier. In this 
article, we extend the focus to classifying cancer types, both binary and 
multicategory. We evaluate five different kinds of popular machine learning 
algorithms for classification of SAGE data and propose to use Chi-square for SAGE 
tag selection before building classification model.  

This paper proceeds as follows. Section 2 outlines the five learners we investigated. 
Section 3 presents the gene selection method. Section 4 reports on performance 
evaluation of those classifiers using micro averaged accuracy and F1 measure. Section 5 
concludes the findings. 

2   Machine Learning Algorithms 

In this section, we will give a brief description to each of the five well-known 
machine learning mechanisms investigated in this work. We begin with a kernel based 
learner: Support Vector Machine [9], a learning paradigm that is based on Structured 
Risk Minimization principle. Then we proceed with a probabilistic leaner: Naive 
Bayes [22]. It is probabilistic in the sense that it is able to estimate the probability of 
each class being predicted. After that, we introduce Nearest Neighbor: an instance 
based learning approach that labels a new sample according to its similarity between 
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stored instance base. Then we proceed with a tree based learner: C4.5 [19]. Finally, 
we discuss a rule based learner: RIPPER [11]. 

2.1   Kernel Based Learning: Support Vector Machine 

The Support Vector Machine (SVM) is a powerful classifier, originally proposed by 
Vapnik, which finds a maximal margin separating hyperplane between two classes of 
data [9]. A SVM selects a small number of critical boundary samples from each class 
and builds a linear discriminant function (also called maximum margin hyperplane) 
that separates them as widely as possible. In the case that linear separation is 
impossible, the technique of kernel will be used to automatically inject the training 
samples into a higher-dimensional space, and to learn a separator in that space. A 
maximum margin hyperplane H(T) for a test sample T is a linear combination of 
kernels computed at the training data points and is constructed as  

))][,(][][()( +∗∗=
i

iii bXTkCsignTH α                              (1) 

where [X]i are the training data points, [C]i are the class labels of these data points, k() 
is the kernel function, b and [ ]i are parameters that determine the hyperplane and can 
be learned from the training data. 

There are several ways for training a SVM. One of the fastest algorithms is 
developed by Platt, which solves the above quadratic programming problem by 
sequential minimal optimization (SMO). In our experiments, we use SMO with the 
polynomial kernel function and the transformation of the output of SVM into 
probabilities is conducted by a standard sigmoid function. 

2.2   Probability Based Learning: Naive Bayes 

Naive Bayes, a simple Bayesian classification algorithm, has been gaining popularity 
lately, and has been found to perform surprisingly well in text category and email 
filtering [13].  

Consider the task of SAGE data classification in a Bayesian learning framework. A 
parametric model is assumed to have generated the data, and Bayes-optimal estimates 
of the model parameters are calculated using the training data. We classifies new test 
library using Bayes rule to turn the generative model around and calculate the 
posterior probability that a class would have generated the test library. Then, 
classification becomes a simple matter of selecting the most probable class. 

We assume that SAGE libraries are generated by a mixture model parameterized 
by . The mixture model consists of mixture components C ={c1… cM, M is the 
number of classes} that correspond to the classes. Each component ci  C is 
parameterized by a disjoint subset of . A library lj is generated by first selecting a 
mixture component ci according to the prior distribution P(ci| ) and then having the 
component generate a library according to its own parameters, with distribution 
P(lj|ci; ). The likelihood of a library is given by a sum of probability over all mixture 
components: 
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where i= 1, 2,…, M. Each SAGE library has been manually annotated with their 
correct class. Since the true parameters  of the mixture model are not known, we 
need to estimate the parameters from labeled training libraries. If ’ denotes the 
estimated parameters, given a set of training libraries L={l1,…, lN, N is the number of 
training samples}, we use maximum likelihood to estimate the class prior parameters 
as the fraction of training libraries is ci:  

N

lcP
cP

N

j ji

ici

=== 1''
)|(

)|( θθ                                         (3) 

where P(ci|lj) is 1 if lj correspond to class ci and 0 otherwise. 

    In general, the SAGE data classification problem can be described as follows. 
Taking into account that one library only belongs to one class (type of cancer), for a 
given library l we search for a class ci that maximizes the posterior probability P(ci| 
l; ’), by applying Bayes rule: 
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Note that P(l| ’) is the same for all classes, thus l can be classified by computing. 
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See [16] for more information on estimating continuous distributions in Bayesian 

classifiers. 

2.3   Instance Based Learning: Nearest Neighbor 

Instance based learning (also called memory-based Learning) is a non-parametric 
inductive learning paradigm that stores training instances in a memory structure on 
which predictions of new instances are based. The approach assumes that reasoning is 
based on direct reuse of stored experiences rather than on the application of 
knowledge (such as models or decision trees) abstracted from experience. The 
similarity between the new instance and an example in memory is computed using a 
distance metric. In our experiment, we used IB1 [20], a Nearest Neighbor (NN) 
classifier that uses Euclidian distance metric [14].  

The main idea of NN for SAGE data is that it treats all libraries as points in the m-
dimensional space (where m is the number of tags/genes in the library set) and given 
an unseen library l, the algorithm classifies it by the nearest training library. 
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2.4   Decision Tree Based Learning: C4.5 

Decision tree (DT) is one of the most popular inductive learning algorithms. The 
nodes of the tree correspond to attribute (in our case gene) test, the links (to attribute 
values and the leaves) to the classes. To induce a DT, the most important attribute 
(according to an attribute selection criteria, such as information gain, GainRatio, etc.) 
is selected and placed at the root; one branch is made for each possible attribute value. 
This divides the examples into subsets, one for each possible attribute value. The 
process is repeated recursively for each subset until all instances at a node have the 
same classification, in which case a leaf is created. To classify an example we start at 
the root of the tree and follow the path corresponding to the example’s values until a 
leaf node is reached and the classification is obtained. To prevent overtraining DT is 
typically pruned. The most popular DT learning algorithm is Quinlan’s C4.5 [19]. We 
have used the Weka [18] implementation of the C4.5 algorithm in our experiments. 

2.5   Rules Based Learning: RIPPER 

RIPPER [11], a well-known rule based learning algorithm, builds a ruleset by 
repeatedly adding rules to an empty ruleset until all positive examples are covered. 
Rules are formed by greedily adding conditions to the antecedent of a rule (starting 
with an empty antecedent) until no negative examples are covered. After a ruleset is 
constructed, an optimization postpass massages the ruleset so as to reduce its size and 
improve its fit to the training data. A combination of cross-validation and minimum-
description length techniques are used to prevent overfitting. 

3   Gene Selection 

It is common to use gene selection for gene expression data classification, in order to 
reduce over-fitting to the training data and to speed up the classification process [6]. 
Following [7] we list four subset selection methods/metrics: (1) ratio of features 
Between-categories to Within-category sums of squares (BW); (2-3) Signal-to-Noise 
(S2N) scores [8] applied in a One-Versus-Rest (S2N-OVR) and One-Versus-One 
(S2N-OVO) fashion; and (4) Kruskal-Wallis nonparametric one-way ANOVA (KW). 

For SAGE data clustering, J. Sander et al. used the Wilcoxon rank sum test, which 
can tests whether two libraries are taken from the same population, to exclude SAGE 
tags/genes that have similar expression levels [10]. We propose to select useful 
genes/features by Chi-square for SAGE data classification problem. The Chi-square, 
which is a popular feature selection method, will evaluate genes individually with 
respect to the classes. The range of continuous valued features needs to be discretized 
into intervals. Chi-squared is based on comparing the obtained values of the 
frequency of a class because of the split to the expected frequency of the class. Of  
the N examples, let Nij be the number of samples of the Ci class within the jth interval 
and MIj is the number of samples in the jth interval. The expected frequency of Nij is 
Eij = MIj |Ci|/N. The Chi-squared statistic of a gene is then defined as: 
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where I is the number of intervals. The larger the 2 value, the more informative the 
corresponding gene is.  

4   Experiments 

In this section, we present the experiments performed on five machine learning 
algorithms for SAGE data based cancer classification. First, we will give the dataset 
descriptions and the SAGE data preprocessing method. Next, we present the empirical 
results of the experiments on two SAGE datasets (brain and breast). 

4.1   Data and Preprocessing 

The experiments are based on two SAGE data sets, the raw data is available on the 
NCBI SAGE website (http://www.ncbi.nlm.nih.gov/SAGE). One problem with the 
raw SAGE data is that many tags in each library are expected to contain sequencing 
errors, and since these errors result in noise and increase the dimensionality of the 
data, error removal is a must need. Within one library, some tags have a frequency of 
1; these unique tags are either sequencing errors or representations of very low 
expression level genes. In our experiment, we just remove these single frequency tags 
to filter out data noise. 

Brain Dataset: The dataset is based on 52 Hs (human sapiens) SAGE brain libraries. 
These libraries are made of samples from human brain and fall in to four categories: 
Astrocytoma (11 libraries), Ependymoma (9 libraries), Glioblastoma (8 libraries) and 
Medulloblastoma (24 libraries). There are 64558 genes (after noise removal) in the 
dataset. We used the dataset for multicategory classification experiments. 

Breast Dataset: The dataset is based on 26 Hs (human sapiens) SAGE breast libraries. 
These libraries are made of samples from human breast and fall in to two classes: 
Normal (10 libraries) and Cancer (16 libraries). There are 36087 genes (after noise 
removal) in the dataset. We used this dataset for binary classification experiments. 

4.2   Performance Measures 

Our experiments adopt the most commonly used performance measures, including the 
accuracy and F1 measures.  

Accuracy is defined by the ratio of the number of correct predictions and the 
number of all predictions (both correct and incorrect): Acc =NcpNp, where Ncp is  
the number of correct predictions and Np is the number of all predictions (i.e. the 
number of test samples).  
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F1 rating is defined as F1=2R*P/(R+P). Recall (R) is the percentage of the libraries 
for a given category that are classified correctly. Precision (P) is the percentage of the 
predicted libraries for a given category that are classified correctly. It is a normal 
practice to combine recall and precision to F1 measure so that classifiers can be 
compared in terms of a single rating. 

4.3   Results 

K-fold cross-validation is used for estimating classifier performance. We choose k=5 
for all our experiments, we do not use k=10 because there are two classes 
Ependymoma and Glioblastoma which have less than 10 samples. We performed 
thirty runs for each 5-fold cross-validation and averaged the results. The number of 
selected genes varies from 1 to all. 

Multicategory classification: Fig. 1 shows the results of multicategory classification 
on the human brain libraries. Without gene selection, Naive Bayes, SVM, C4.5 and 
RIPPER have similar performance, RIPPER are the worst. The performances of five 
classifiers are improved by Chi-square based gene selection. SVM reaches a 
maximum of 94% accuracy at 200 genes. Naive Bayes reaches a maximum of 0.91 F1 
measure at 200 genes. The figure shows that in order to successfully classify  
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Fig. 1.  Micro average accuracy (a) and F1 measure (b) curves of five classifiers for different 
feature sizes on the brain SAGE libraries: multicategory classification. The X axis denotes the 
number of selected genes according to Chi-square ranking. 
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multicategory cancers we just need to select several hundred genes accompanied with 
SVM or Naïve Bayes classifiers. 

Binary classification: Fig. 2 shows the results of binary classification on the human 
breast libraries. Without gene selection, SVM and Naive Bayes are the top two 
classifiers, RIPPER is the worst. Gene selection can improve the performance of all 
five classifers. Naive Bayes reaches a maximum of 98% accuracy at 500, 1000 and 
2000 genes and a maximum of 0.96 F1 measure at 500 and 1000 genes. With only a 
few genes, C4.5, NN, and RIPPER can still achieve high accuracy and F1 measure. 
This show that only few Chi-square selected genes can distinguish between cancer 
and normal samples. 
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Fig. 2. Micro average accuracy (a) and F1 measure (b) curves of five classifiers for different 
feature sizes on the breast SAGE libraries: binary classification (between normal and cancerous 
tissues). The X-axis denotes the number of selected genes according to Chi-square ranking.  

5   Conclusions 

In this study we evaluate popular machine learning methods (SVM, Naive Bayes, 
Nearest Neighbor, C4.5 and RIPPER) for classifying cancers based on SAGE gene 
expression profiles. From the analysis of the experimental human brain and breast 
SAGE data, we found that SVM and Naïve Bayes can achieve better performance 
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than the other three classifiers with suitable number of selected genes. We also found 
that with Chi-square, several hundred tags/genes are sufficient for successful 
multicategory cancer classification and only a few genes are sufficient to distinguish 
between cancer and normal samples. 
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Abstract. Machine learning techniques have been recognized as power-
ful tools for the analysis of gene expression data. However, most learning
techniques used in class prediction in gene expression analysis during the
past years generate black-box models. Although the prediction accuracy
of these models could be very well, they provide little insight into the
biological facts. This paper holds the recognition that a more reasonable
role for machine learning techniques is to generate hypotheses that can
be verified or refined by human experts instead of making decisions for
human experts. Based on this recognition, a general approach to gen-
erate comprehensible hypotheses from gene expression data is described
and applied to human acute leukemias as a test case. The results demon-
strate the feasibility of using machine learning techniques to help form
hypotheses on the relationship between genes and certain diseases.

1 Introduction

DNA arrays consist of a large number of DNA molecules spotted in a systemic or-
der on a solid substrate. When the diameter of the DNA spot is less than 250μm,
DNA arrays can be categorized as microarrays [14][19]. With the development of
microarray technology, the simultaneous measurement of gene-expression levels
for thousands of genes is now possible. Analyzing gene expression data could be
helpful for medical treatment. For example, systematic and unbiased approaches
could be developed for cancer classification through analyzing gene expression
data, which is very important for cancer treatment [8]. However, as keeping track
of thousands of measurements and their relationships is overwhelmingly compli-
cated, gene expression data is difficult to analyze without the help of computers.

During the past years, machine learning techniques have been recognized as
powerful tools for gene expression analysis [16]. Machine learning [15] is the
study of computer algorithms capable of learning to improve their performance
of a task on the basis of their own previous experience. It is closely related to
pattern recognition and statistical inference, and has data mining as its engineer-
ing application aspect. Machine learning techniques such as clustering, neural
networks, hidden Markov models, and nonlinear regression have already been
widely used in the practice of engineering, business, and science.
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In analyzing gene expression data, most work had primarily been descriptive
rather than analytical and had focused on cell culture rather than primary pa-
tient material, in which genetic noise might obscure an underlying reproducible
expression pattern. Since Golub et al.’s work [8], learning techniques such as
neural networks [1][8], support vector machines [2][7], ensemble learning meth-
ods [1][2][4][5][22], nearest neighbor classifiers [2], logistic regression [13], linear
discriminant analysis [5][17], emerging patterns [12], etc. have been applied to
gene expression data, where the goal is to classify cases into diagnostic or prog-
nostic categories. However, almost all the learning techniques used in gene ex-
pression analysis during the past years generate black-box models. Although the
prediction accuracy of these models could be very well, they provide little insight
into the biological facts and can hardly provide explicit explanations for their
predictions.

Imagine the scenario where a patient asked the doctor why he made a spe-
cific diagnosis, the doctor said he could not explain because he did not know
either. Of course such a diagnosis is unacceptable. This somewhat reflects the
problem of prediction with black-box models. In fact, it is not reasonable to
anticipate computers replace experienced human medical experts. Therefore a
more reasonable role for machine learning techniques is to generate hypotheses
that could be verified or refined by human experts, which might be the basis for
further understanding of the relationship between specific genes and diseases. It
is evident that black-box models are helpless to this purpose.

In fact, there are many works devoted to the improving of the comprehensibil-
ity of black-box models [24], some of which has already been applied to medical
diagnosis [10][21]. Unfortunately, as mentioned before, in the analysis of gene
expression data, almost all the methods used before generate black-box models.

In this paper, a general approach to generate comprehensible hypotheses from
gene expression data is described, which is based on a recent achievement of
machine learning, i.e. the C4.5Rule-PANE method [25]. This paper applies this
approach to human acute leukemias as a test case. The results demonstrate the
feasibility of using machine learning techniques to help disclose the relationship
between genes and certain diseases.

The rest of this paper is organized as follows. Section 2 briefly introduces the
C4.5Rule-PANE method. Section 3 describes the case study on generating com-
prehensible hypotheses for human acute leukemias from gene expression data.
Section 4 concludes.

2 The Method

Although the main purpose of this paper is to report on the application of the
C4.5Rule-PANE method to human acute leukemias, for the self-containness of
this paper, here a brief introduction on the method is given. Interested readers
can refer [25] for more details.

Suppose there is a gene expression data set S = {(x1, y1),(x2, y2),· · · , (xl, yl)},
where xi is a feature vector coding the gene measurements on a case, yi is the
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known outcome of the case corresponding to xi, l is the number of cases with
known outcomes.

At first, bootstrap sampling [6] is employed to produce N data sets with the
same size as |S|, i.e. the number of cases in S. A neural network classifier is then
trained from each of these new data sets. Therefore a neural network ensemble
[27] is obtained.

After that, the neural network ensemble is used to judge the cases in S. In detail,
all the feature vectors xi (i = 1, 2, · · · , l) are fed to the neural network classifiers.
For xi, N predictions will be provided, each by one neural network classifier. Then,
the majority of these N predictions is regarded as the outcome of the neural net-
work ensemble on xi, which is denoted as y′

i. Therefore, after processing all the
cases in S, a new data set S′ = {(x1, y

′
1), (x2, y

′
2), · · · , (xl, y

′
l)} is generated.

Moreover, a set of random vectors x∗
j (j = 1, 2, · · · , m) can be generated,

where the k-th element of x∗
j is a value randomly chosen from the values that

could appear on the k-th gene measurement. These vectors are fed to the neural
network ensemble. Let the outcome of the neural network ensemble on x∗

j be
denoted as y∗

j . Then a data collection S∗ = {(x∗
1, y

∗
1), (x

∗
2, y

∗
2), · · · , (x∗

m, y∗
m)} is

generated. Through combining S′ and S∗, a new data set S∗∗ is obtained. The
size of S∗∗ can be controlled by the parameter μ = m/l. Note that S∗∗ could be
far bigger than the original data set S because m could be far bigger than l.

Then, a C4.5 decision tree [20] is trained from S∗∗ and every path from the
root to a leaf is converted to an initial propositional rule by regarding all the
test conditions appearing in the path as the conjunctive rule antecedents while
regarding the classification held by the leaf as the rule consequence. All the
initial rules are generalized by removing antecedents that do not seem helpful
for distinguishing a specific class from other classes. Rules that do not contribute
to the accuracy of the rule set are also removed. A default rule is created for
dealing with cases that have not been covered by any of the generated rules,
which has no antecedent and the consequence is the biggest class among these
cases. The resulting rules could finally be organized into an ‘IF-THEN-ELSE’
format with embedding ‘IF-THEN-ELSE’ structures, which corresponds to a
hypothesis generated from the gene expression data.

The details of C4.5Rule-PANE can be found in [25], whose computational
cost is very close to that of the neural network ensemble. It has been proven [26]
that training a neural network ensemble and then using it to predict the training
data, which is then given to another learning approach, could be beneficial. The
premise is that the original training data set contains much noise and has not
fully captured the target distribution, and the neural network ensemble is more
accurate than the model directly trained from the original training data set by
the second learning approach. It is evident that the first condition is very easy
to meet because in rare applications the training data set does not contain much
noise and does fully capture the target distribution.

Note that the C4.5Rule-PANE algorithm is not an algorithm which simply
extracts faithful rules from neural network ensembles [24]. Instead, some mistakes
made by the neural network ensemble could be corrected during the learning of
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the rules. Thus, the generalization ability of C4.5Rule-PANE can be even higher
than that of the neural network ensemble [25][26].

It is also worth noting that in analyzing gene expression data, an often en-
countered problem is that there are only a small number of cases with known
outcomes. Thus, models built by machine learning techniques are not very reli-
able since the training set is too small. C4.5Rule-PANE has two keys to relax
this limitation. The first is the generation of S∗ with the help of neural network
ensemble, which could greatly enlarge the training set for the rule generation
process. The second is the comprehensible rules it generated, which could be
verified by human experts instead of could only be used alone.

In fact, different rules can be produced if C4.5Rule-PANE is run for several
times. These rules can be validated if there are cases with known outcomes that
have not been used in training, and the rule with the highest validating accuracy
can be regarded as the final hypothesis which might be helpful in disclosing the
relationship between certain genes and diseases.

3 Case Study

Chemotherapy regimens for acute lymphoblastic leukemia (ALL) generally con-
tain corticosteroids, vincristine, methotrexate, and L-asparaginase, whereas most
acute myeloid leukemia (AML) regimens rely on a backbone of daunorubicin and
cytarabine [3][18]. Although remissions can be achieved using ALL therapy for

Table 1. Measurements appear in the hypotheses

ID# Gene accession number Gene description

5 AFFX-BioC-3 at AFFX-BioC-3 at (endogenous control)
8 AFFX-CreX-5 at AFFX-CreX-5 at (endogenous control)
13 AFFX-BioC-5 st AFFX-BioC-5 st (endogenous control)
22 AFFX-DapX-3 at AFFX-DapX-3 at (endogenous control)
461 D49950 at Liver mRNA for interferon-gamma

inducing factor (IGIF)
1834 M23197 at CD33 CD33 antigen (differentiation antigen)
1882 M27891 at CST3 Cystatin C (amyloid angiopathy and

cerebral hemorrhage)
2020 M55150 at FAH Fumarylacetoacetate
2242 M80254 at PEPTIDYL-PROLYL CIS-TRANS ISOMERASE,

MITOCHONDRIAL PRECURSOR
2402 M96326 rnal at Azurocidin gene
2759 U12471 cds1 at Thrombospondin-p50 gene extracted from

Human thrombospondin-1 gene, partial cds
3258 U46751 at Phosphotyrosine independent ligand p62

for the Lck SH2 domain mRNA
3320 U50136 rnal at Leukotriene C4 synthase (LTC4S) gene
4847 X95735 at Zyxin
5039 Y12670 at LEPR Leptin receptor
6201 Y00787 s at INTERLEUKIN-8 PRECURSOR
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AML and vice versa, cure rates are markedly diminished, and unwarranted toxi-
cities are encountered. So, distinguishing ALL from AML is critical for successful
treatment.

The data were taken from [8]. The training data set consists of 11 AML cases
and 27 ALL cases, while the test data set consists of 14 AML cases and 20 ALL
cases. Each case is composed of 7,129 gene expressions.

Since the number of gene measurements is very large compared to the number
of cases, feature selection in the context of gene expression analysis has been
investigated and found beneficial [1][4][9][11]. In a previous work where seven
different feature selection methods were applied to the concerned data, it was

Table 2. Hypotheses generated on the human acute leukemias data set

Hypothesis 1:

IF (M27891 at > 820) AND (U12471 cds1 at > 145)
THEN class = AML (11/11)

ELSE IF (X95735 at ≤ 1380.257218) THEN class = ALL (18/18)
ELSE IF (U50136 rna1 at ≤ 1464.485389) THEN class = ALL (2/3)
ELSE class = AML (2/2)

Hypothesis 2:

IF (Y00787 s at ≤ 523) AND (M23197 at ≤ 472.769728)
THEN class = ALL (16/17)

ELSE IF (D49950 at > 58.110118) AND (M23197 at > 191.728789)
AND (U12471 cds1 at > 56.992413) THEN class = AML (13/13)

ELSE IF (U46751 at > 5402.227657) AND (M96326 rna1 at
≤ 17475.565446) THEN class = AML (0/0)

ELSE class = ALL (4/4)

Hypothesis 3:

IF (M27891 at ≤ 1358) AND (Y00787 s at ≤ 11858.081462)
THEN class = ALL (19/19)

ELSE IF (U12471 cds1 at > 173.296678) THEN class = AML (9/9)
ELSE IF (M27891 at > 7090.800758) AND (M80254 at ≤ 693) AND

(AFFX-BioC-3 st ≤ -225) AND (M27891 at ≤ 14708.236206)
THEN class = ALL (0/0)

ELSE IF (Y12670 at ≤ 2017.153487) THEN class = AML (5/6)
ELSE IF (AFFX-CreX-5 at ≤ -393.142106) THEN class = AML (0/0)
ELSE class = ALL (0/0)

Hypothesis 4:

IF (M27891 at > 851.428976) AND (U12471 cds1 at > 139.014026)
AND (D49950 at > 19.992492) THEN class = AML (12/12)

ELSE IF (Y12670 at > 1233.788534) AND (M55150 at > 284.216049)
THEN class = AML (0/0)

ELSE IF (M23197 at ≤ 288) THEN class = ALL (19/19)
ELSE IF (AFFX-DapX-3 at ≤ -94.34693) THEN class = ALL (1/2)
ELSE IF (AFFX-BioC-5 st ≤ -264.931499) THEN class = AML (1/1)
ELSE class = ALL (0/0)
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found that among the 7,129 measurements, there were only 30 being chosen by
more than two methods [4]. Therefore, here only these 30 measurements are used.
The results reported below show that such a feature selection scheme is quite
effective. Note that among these 30 measurements only 16 measurements finally
appear in the hypotheses generated by C4.5Rule-PANE, as shown in Table 1.

Through setting the parameter μ to 1, 2, 3 and 4, respectively, four different
hypotheses have been generated by C4.5Rule-PANE, as listed in Table 2. Here
(x/y) at the end of each line indicates that among the 34 test cases, y cases were
judged by this line while x cases were correctly judged.

The test accuracy of any of these hypotheses is 97.1%. In fact, each hypothe-
sis made only one misclassification. Note that endogenous control measurements
appear in Hypothesis 3 and Hypothesis 4, and therefore Hypothesis 1 and Hy-
pothesis 2 are more preferable.

Since the data used in this case study has been widely investigated, the test
accuracy of the above hypotheses can be compared with the best accuracy re-
ported by different researchers, as shown in Table 3. Note that since the machine
learning techniques used in most previous research on human acute leukemias
generate black-box models, the comprehensibility of the hypotheses generated
by C4.5Rule-PANE is much better.

Table 3 shows that the accuracy of the hypotheses generated by C4.5Rule-
PANE is very comparable to the best result reported before. In fact, since the test
data set is very small (only 34 cases), the reliability of a model is not guaranteed
even though its test accuracy reaches 100%. Different to the black-box models
used before [1][2][4][5][7][8][13][17][22], the hypotheses generated by C4.5Rule-
PANE can be verified by human experts. Therefore, it can be anticipated that
they are of greater value in prediction than black-box models. Moreover, it is
worth noting that the value of these hypotheses are beyond pure prediction,
because they are comprehensible and might help human experts to disclose the
relationship between certain genes and diseases.

Table 3. Comparing the test accuracy of the hypotheses generated by C4.5Rule-PANE
with the best accuracy reported by different researchers

Authors Year Method Accuray

Golub et al. [8] 1999 Self-Organizing Map 85.3%
Ben-Dor et al. [2] 2000 AdaBoost 95.8%
Furey et al. [7] 2000 Support Vector Machine 94.1%
Li & Yang [13] 2001 Logistic regression 94.1%
Cho & Ryu [4] 2002 Ensemble of heterogeneous classifiers 100%
Dudoit et al. [5] 2002 BoostCART 95.0%
Li & Wong [12] 2002 Emerging Patterns 91.2%
Nguyen & Rocke [17] 2002 Logistic discriminant 97.1%
Albrecht et al. [1] 2003 Ensemble of perceptrons 100%
Tan & Gilbert [22] 2003 Ensemble of decision trees 91.2%
Yun & Keong [23] 2005 Discrete Function Learning 94.1%
this paper now C4.5Rule-PANE 97.1%
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4 Conclusion

Machine learning techniques have been introduced into gene expression analysis
recently. However, almost all the previous works emphasize on constructing mod-
els with high prediction accuracy, nevertheless the models are black-boxes. This
paper claims that an important role for machine learning techniques to play in
gene expression analysis is to help human experts grasp the laws behind biologi-
cal facts, therefore comprehensible hypotheses might be more helpful than black-
box models. Based on this recognition, this paper presents a general approach to
generate comprehensible hypotheses from gene expression data, which utilizes a
recent proposed machine learning technique, i.e. the C4.5Rule-PANE method.
Case study show that this approach work well on human acute leukemias. It
is evident that such an approach can be applied to generate comprehensible
hypotheses from other gene expression data, which may help enlarge the bene-
fit from microarray technology. In the future the authors expect to work with
experts on genes and diseases, wishing that the power of the C4.5Rule-PANE
method can be really utilized.
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Abstract. The degree of malignancy in brain glioma needs to be as-
sessed by MRI findings and clinical data before operations. There have
been previous attempts to solve this problem by using fuzzy max-min
neural networks and support vector machines (SVMs), while in this pa-
per, a novel algorithm named PRIFEB is proposed by combining bagging
of SVMs with embedded feature selection for its individuals. PRIFEB
is compared with the general case of bagging on UCI data sets, exper-
imental results show PRIFEB can obtain better performance than the
general case of bagging. Then, PRIFEB is used to predict the degree of
malignancy in brain glioma, computation results show that PRIFEB ob-
tains better accuracy than other several methods like bagging of SVMs
and single SVMs does.

1 Introduction

The degree of malignancy in brain glioma [1] decides the treatment, because
if it is grade I or II according to Kernohan, the success rate of operation is
satisfactory; otherwise, if it is grade III or IV, there will be high surgical risk and
poor life quality [2] after surgery which must be taken into account before any
further decision. Now, the degree of malignancy is predicted mainly by Magnetic
Resonance Imaging(MRI) findings [3] and clinical data [4] before operations.
Some features obtained manually are fuzzy values, some features are redundant,
even irrelevant, which makes the prediction of the degree of malignancy a hard
task. Moreover, brain glioma is severe but infrequent and only a small number
of neuroradiologists have the chances to accumulate enough experiences to make
correct judgments. Therefore, it is worth helping the neuroradiologists to predict
the degree of malignancy of tumors.

In the previous work, degree prediction of malignancy in brain glioma had
been solved by Ye et al. [5], where a fuzzy max-min neural networks was used.
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Furthermore, Li et al. [6] tried to employ support vector machines (SVMs) to
improve the prediction accuracy, and obtained satisfactory results. Nowadays,
ensemble learning is becoming a hot topic in the data mining community [7],
which has been widely used to improve the generalization performance of single
learning machine. Therefore, using the bagging [8] of SVMs to predict the degree
of malignancy is an interesting issue. Yet, there are many irrelevant and redun-
dant features in the medical data sets, so feature selection [9, 10] is important
to improve the ensemble method.

In order to improve the accuracy of bagging of SVMs, a novel algorithm
of PRIFEB is proposed to use the feature selection methods to improve the
accuracy of individuals; this is motivated by the work of Valentini and Dietterich
[11], in which they concluded that improving the accuracy of SVMs will improve
the accuracy of their bagging. Fortunately, we just finished one work which used
an embedded feature selection method to improve the accuracy of SVMs [12].
Therefore, combining them to improve the prediction accuracy of the degree of
malignancy is studied in this paper.

The rest of this paper are arranged as follows: In Section 2, a data set of brain
glioma is briefly described. In Section 3, PRIFEB, an embedded feature selection
model with the prediction risk criteria for bagging, is described in details. In
Section 4, PRIFEB is compared with the general bagging method on UCI data
sets, and then, PRIFEB is employed to predict the degree of malignancy. At
last, conclusions will be given in Section 5.

2 The Data Set for Classification of Brain Glioma

The brain glioma data set [5, 6] was gathered by neuroradiologists from Hua-
Shan Hospital in Shanghai of China. There are more than 20 items in each case,
including symptoms on different features, preoperative diagnosis made by some
neuroradiologist and, without an exception, a clinical grade (the actual grade
of glioma obtained from surgery). With the help of domain experts, we chose
fifteen features, Gender, Age, Shape, Contour, Capsule of Tumor, Edema, Mass
Effect (Occupation), Post-Contrast Enhancement, Blood Supply, Necrosis/Cyst
Degeneration, Calcification, Hemorrhage, Signal Intensity of the T1-weighted
Image, Signal Intensity of the T2-weighted Image, and Clinical Grade [4, 13].
In some cases, the value of Post-Contrast enhancement is unknown. In fact,
Location and Size also help to make the diagnosis, but their complex descriptions
can not be well modeled by our algorithms, so we didn’t adopt it. Except for
Gender, Age and Clinical Grade, the other items are obtained from MRI of the
patient and described with uncertainty to various extents. In order to predict the
degree of malignancy in brain glioma, descriptions of all features are converted
into numerical values as in the work [6], of which the unknown value of Post-
Contrast enhancement is defined as −1.

Originally, four grades are used to mark the degree of malignancy; we merge
grade I and II into low-grade and grade III and IV to high-grade. According to
the grade, all 280 cases of brain glioma are divided into two classes: low-grade and
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high-grade, in which 169 are of low-grade glioma and 111 are of high-grade ones.
There are 126 cases containing missing values on Post-Contrast enhancement,
and in the other subset of 154 complete cases, 85 cases are of low-grade gliomas
and 69 are of high-grade.

More details about this data set can also be found in [6].

3 Computational Methods

The classification problem of brain glioma has been solved using the fuzzy max-
min neural networks (FMMNN) method, [5], yet, there are so many parameters
to be predefined that FMMNN is hard to operate. Then, support vector ma-
chines (SVMs) were used to predict the degree of malignancy in brain glioma
and obtained satisfactory results [6]. Nowadays, ensemble learning is a state-of-
the-art technique, which can effectively improve the prediction accuracy of single
learning machine, therefore, we try to employ ensemble learning techniques to
improve the prediction accuracy. Yet, there are irrelevant and/or redundant fea-
tures in the brain glioma data sets which will hurt the performance of learning
machine. Motivated by this, we want to use feature selection to remove irrelevant
features for ensemble learning techniques and then apply the improved ensemble
learning method to the degree prediction of malignancy.

Feature selection for the individuals can help to improve the accuracy of bag-
ging and is based on the conclusion of Valentini and Dietterich [11] where they
concluded that reducing the error of support vector machines (SVMs) will reduce
the error of bagging of SVMs. At the same time, we used embedded feature se-
lection to reduce the error of SVMs effectively [12]. Enlightened by these works,
we propose a novel algorithm PRIFEB (Prediction Risk based Feature sElection
for Bagging) which uses the embedded feature selection method with the predic-
tion risk criteria for bagging of SVMs to test if feature selection can effectively
improve the accuracy of bagging methods and furthermore improve the degree
prediction of malignancy in brain glioma.

In PRIFEB, the prediction risk criteria [14] is used to rank the features, which
evaluates one feature through estimating prediction error of the data sets when
the values of all examples of this feature are replaced by their mean value.

Si = ERR(xi) − ERR (1)

where ERR is the training error, and ERR(xi) is the test error on the training
data set with the mean value of ith feature and defined as

ERR(xi) =
1
	

�∑
j=1

(ỹ(x1
j , · · · , xi, · · · , xD

j ) = yj)

where 	 is the number of examples and D is the number of features, xi is the
mean value of the ith feature. ỹ() is the prediction value of the jth example
after the value of the ith feature is replaced by its mean value. Finally, the
feature corresponding with the smallest will be deleted, because this feature
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causes the smallest error and is the least important one. Since the search strategy
is heuristic, the selected feature subset is only near optimal. This criteria had
been compared with Optimal Brain Damage (OBD) [15] by using multi-class
support vector machines, and obtained better results than OBD did [12].

The basic steps of PRIFEB are described as follows.

Algorithm PRIFEB
Suppose Tr(x1, x2, · · · , xD, C) is the training set and p is the number of individ-
uals of ensemble.

Tr and p are input into the procedure and ensemble model L is the output.

Step 1. Generate a training subset Trk from Tr by using Bootstrap sampling
algorithm [8], the size of Trk is three quarters of the size of Tr.

Step 2. Train an individual model Lk on the training subsetTrk by using support
vector machines algorithm and calculate the training error ERR.

Step 3. Compute the prediction risk value Si using Equation (1). If Si is greater
than 0, the ith feature is selected as one of optimal features.

Step 4. Repeat Step 3 until all the features in Trk are computed.
Step 5. Generate the optimal training subset Trk−optimal from Trk according

to the optimal features obtained in Step 3.
Step 6. Re-train the individual model Lk on the optimal training subset

Trk−optimal by using support vector machines.
Step 7. Repeat from Step 2 to Step 6 until p models are set up, p is 20 in this

paper.
Step 8. Ensemble the obtained models L by the way of majority voting method

for classification problems.

4 Computational Results

In this section, the novel algorithm of PRIFEB will be validated on the UCI data
set, and then applied to the degree prediction of malignancy in brain glioma.

4.1 Experiments on UCI Data Sets

Eight data sets are selected from the UCI machine learning repository [16] and
listed in Table 1, in which the number of cases ranges from hundreds to thousands
and the number of features ranges from 9 to 35. To make them suitable for our
algorithms, the nominal values are changed to be numerical in all data sets. Then,
all the attributes are transformed into the interval of [-1, 1] by an affine function.

The hold out method is used to validate the results. Experiments will be
repeated fifty times on each data set. The same pair of parameters for SVMs, C
=100, σ =10, is used and the number of individuals for bagging is 20.

Experimental results of the accuracy obtained by the different bagging meth-
ods are shown in Table 2, from which we can see that the mean accuracy obtained
by the bagging methods with feature selection are improved in various degree
on different data sets which ranges from 1% to 6%, the mean value improved is
3.17 percent for the PRIFEB method. At the same time, the standard deviation
are also reduced in some degree.
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Table 1. The properties of the used UCI data sets

Data set Number of classes Number of features Number of cases
all-bp 3 29 3772
backup 19 35 683
breast-cancer-W 2 9 699
glass 6 9 214
proc-C 5 13 303
proc-H 2 13 294
soybean-l 19 34 307
statlog-h 2 13 270

Table 2. Statistical prediction accuracy by the bagging methods with feature selection
and/or without feature selection on the UCI data sets

Data set PRIFEB Bagging
all-bp 97.07 ± 0.45 95.95 ± 0.13
backup 91.99 ± 1.41 89.90 ± 2.06
breast-cancer-W 94.38 ± 1.02 91.23 ± 1.71
glass 64.95 ± 3.74 61.75 ± 5.12
proc-C 53.71 ± 3.67 49.93 ± 3.65
proc-H 79.84 ± 2.55 73.89 ± 3.52
soybean-l 85.54 ± 3.64 83.25 ± 3.57
statlog-h 78.62 ± 3.30 74.88 ± 3.87
Average 80.76 ± 2.47 77.60 ± 2.59

4.2 The Brain Glioma Case

To improve the prediction accuracy, we employ the bagging of SVMs and a
novel algorithm PRIFEB to the classification of brain glioma. To compare the
classification ability of the methods of PRIFEB with that of bagging of SVMs and
single SVMs, the 10-fold cross validation technique is used in this computation.
The SVMs used in this experiment are with linear kernel and the parameter of
the trade off between the complexity and the error is C = 100, and the number
of individuals of bagging is 20. These parameters are not optimal, but they can

Table 3. Results of accuracy obtained by 10-fold cross validation method

Data set Racc (%) Std. dev.(%) Highest(%) Lowest(%)
PRIFEB D280 87.29 7.91 97.68 75.00

D154 86.57 8.23 100.00 73.33
Bagging of SVMs D280 86.36 7.22 96.43 75.00

D154 86.43 8.17 100.00 73.33
SVMs D280 85.70 6.52 96.43 71.43

D154 84.96 9.97 100.00 73.33
FMMNN-FRE D280 83.21 5.31 89.29 75.00

D154 86.37 8.49 100.00 73.33
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make the learning methods obtain satisfying results according to the experience
[6]. Computational results are shown in Table 3, where D280 is the total data
set of 280 cases with missing values in Post-Contrast enhancement, while D154
is the the data set of 154 complete cases. The results of the previous studies are
also reprinted in Table 3, where results of SVMs are collected from [6] and those
of FMMNN-FRE are collected from [5].

From Table 3, it can be seen that 1) The results of Bagging are better than
that of single SVMs, which show that Bagging of SVMs can really improve
the prediction accuracy of single ones. 2) The results of PRIFEB, the novel
algorithm, are better than that of the general case of bagging of SVMs.

5 Conclusions

To improve the degree prediction accuracy of malignancy in brain glioma, a novel
algorithm of PRIFEB (Prediction RIsk based Feature sElection for Bagging)
is proposed in this paper. The experimental results on UCI data sets and the
tumor data set show that PRIFEB obtained better results than bagging of SVMs
and single SVMs did. From the view of the classification of brain glioma, the
computation results imply that there is a close relation between the degree of
malignancy in brain glioma with the MRI findings and clinical data, and this
relationship can be modeled by SVMs based method, of which PRIFEB is the
best method on prediction accuracy.

From the view of learning methods, the computation results imply that there
are redundant features in the brain glioma and other real world data sets, and
feature selection can really improve the accuracy of bagging of SVMs. For the
success of PRIFEB, we think that feature selection can reduce the irrelevant
features and even redundant features to improve the accuracy of single indi-
viduals, which has also been proven by the previous work. At the same time,
feature selection reduces different features for different individuals and help to
increase the diversity among the individuals of bagging. According to the the-
ory [7], improving the accuracy of each individual and increasing the diversity
among individuals will effectively improve the accuracy of an ensemble method.
The above two aspects caused by feature selection will make it true that feature
selection can improve the accuracy of bagging of SVMs.

This work improves the classification accuracy of brain glioma and shows the
effectiveness of feature selection for bagging. There is still much work to be done,
such as further improving the feature search method to make feature selection
efficient and effective.
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Abstract. Microarray data is used in a large number of applications ranging 
from diagnosis through to drug discovery. Such data however, often contains 
multiple missing genetic expressions which are generally ignored thus degrad-
ing the reliability of inferred results. This paper presents an innovative and  
robust imputation framework that more accurately estimates missing values 
leading subsequently to better gene selection and class prediction. To prove this 
premise, several missing value techniques including the Collateral Missing 
Values Estimation (CMVE), Bayesian Principal Component Analysis (BPCA), 
Least Square Impute (LSImpute), k-Nearest Neighbour (KNN) and ZeroImpute 
are analysed. A combination of univariate and multiple gene selection methods, 
namely, Between Group to within Group Sum of Squares and Weighted Partial 
Least Squares is then performed before applying class prediction using the 
Ridge Partial Least Square method. Overall, CMVE imputation consistently 
provided superior missing values estimation accuracy compared with the other 
algorithms examined, by virtue of exploiting local and global as well as positive 
and negative correlations between genes, with all empirical results being cor-
roborated by the two-sided Wilcoxon Rank sum statistical significance test.  

1   Introduction 

Microarray gene expression data is already extensively utilised in providing a valu-
able insight in many different areas of both biological and medical science. Many 
researchers have considered such data for class prediction applications including, 
Sehgal et al [1] for breast and ovarian cancer classification, Golub et al [2] for acute 
leukemia and Bhattacharjee et al [3] in the area of human lung carcinomas. Despite its 
wide usage, microarray data frequently contains missing values with up to 90% of 
genes affected [4]. The reasons for these missing values are many and varied, ranging 
from spotting problems, slide scratches, chip blemishes, hybridization errors and 
image corruption through to simply dust on the slide [5]. Whatever the reason, miss-
ing values have the potential to make a significant impact upon subsequent inferences 
made from the microarray data, in applications such as gene selection and class pre-
diction, which involve techniques like Between Group to within Group Sum of 
Squares (BSS/WSS), Neural Networks (NN), Support Vector Machines (SVM), Prin-
cipal Component Analysis (PCA) and Singular Value Decomposition (SVD). There 
are many well established approaches to address the problem of missing values, from 
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repeating the experiment to simply ignoring those samples containing missing values. 
Both these solutions however, are unacceptable due to the cost and limited availability 
of samples, so a better strategy is to attempt to accurately estimate the missing values 
by exploiting the correlation between data so the missing value prediction error is 
significantly reduced [4].  

Another feature of microarray data is that in general, the number of samples is rela-
tively small compared to the number of genes in each sample (usually thousands), 
with the result that most classical class prediction methods perform poorly due to 
over-fitting of the training data [6]. In such circumstances, feature selection tech-
niques are a preferred choice, though since these involve dimension reduction i.e. 
PCA and SVD, they do not consider class discrimination when converting data to 
Eigen space with the corollary that lower class prediction accuracy is achieved. Uni-
variate algorithms provide an alternative solution, with examples including the t-test, 
signal to noise ratio, BSS/WSS and Significance Analysis of Microarray [7], though 
each of these is designed either for a binary class response or considers each relevant 
gene individually in selecting the most correlated genes, thus introducing redundancy. 
These problems can be avoided if multivariate gene selection is applied simultane-
ously to consider multiple genes and class information [8] to reduce covariate genes, 
while retaining class discrimination, though the drawback of this strategy is that if a 
multivariate method is combined with a class prediction technique, it becomes highly 
dependent on the learning method employed.  

This paper proposes an innovative framework (Fig. 1) to address the aforemen-
tioned problems by applying the Collateral Missing Value Estimation (CMVE) algo-
rithm [1], which not only generates a lower prediction error compared with other 
existing methods including, Bayesian Principal Component Analysis (BPCA), Least 
Square Impute (LSImpute), k-Nearest Neighbour (KNN) and ZeroImpute, but has 
also increases the classification accuracy for a range of missing values from 1% to 5% 
for multi-class Breast cancer datasets [9]. The paper emphasizes the core tenet that 
better estimation of missing values leads to more accurate gene selection and subse-
quent class prediction results. For gene selection, a cascaded approach is adopted 
employing both univariate and multivariate techniques. Firstly, p discriminant genes 
are selected using BSS/WSS to exploit the model independence property of univariate 
methods before redundant genes are removed using a Weighted Partial Least Square 
(WPLS) algorithm (Fig. 1). Applying BSS/WSS gene selection prior to WPLS affords 
the advantage of reducing the computational time by constraining the WPLS search 
space. For class prediction, several approaches can be employed including Genetic 
Algorithms (GA), NN, SVM [10] and Diagonal Linear Discriminant Analysis 
(DLDA), however, the motivation for using the Ridge Partial Least Squares (RPLS) 
technique in the new framework is its improved performance compared to other clas-
sification algorithms due to being able to handle numerical degeneracy of multi-
collinearity in gene expression data using Penalized Logistic Regression [7]. The 
classifier is applied to a test dataset to predict classes reliably in multi-class microar-
ray data by regressing the significant genes with a ridge penalty [7]. Finally, a  
two-sided Wilcoxon rank sum significance test is applied to validate the hypothesis 
that lower missing value estimation errors lead to better subsequent microarray data 
analysis.  



 Missing Value Imputation Framework for Microarray Significant Gene Selection  133 

 

Fig. 1. Missing Value Imputation Framework for Significant Gene Selection and Class Prediction 

The remainder of this paper is organized as follows. Section 2 outlines the various 
algorithms used for missing value imputation, gene selection and classification re-
spectively, while Section 3 presents a rigorous analysis of their respective empirical 
performance. Some conclusions are provided in Section 4. 

2   Review of Missing Value, Gene Selection and Classification 
Algorithms 

This section respectively outlines the various missing value imputation, gene selection 
and class prediction algorithms (Fig. 1) that are applied and compared in this paper. 

2.1   Missing Value Estimation Algorithms 

A brief review is now presented of the key features of the estimation techniques used 
to compare the imputation performance of the CMVE algorithm. For clarity, the fol-
lowing convention is adopted: Y is assumed to be the gene expression matrix 

m nY ×∈ , where m and n are the number of genes and samples respectively, gI is 
gene expression vector of gene I and gI(J) is the expression value of gI in sample J. 

2.1.1   Least Square Impute (LSImpute) [11]  
This is a regression-based estimation method that exploits the correlation between 
genes. To estimate the missing value Ξ of gI of gene expression matrix Y, the k-
most correlated genes are firstly selected whose expression vectors are similar to 
gene I from Y in all samples except J, containing non-missing values for gene I. By 
having the flexibility to adjust the number of predictor genes k in the regression, 
LSImpute performs best whenever the data possesses a strong localized correlation 
structure, though there is no formal strategy for automatically determining the best 
k value. 

2.1.2   Bayesian Principal Component Analysis (BPCA) [5] 
This approach estimates missing values Ξ in data matrix Y by using Yobs, which have 
genes with no missing values. The Bayesian estimation algorithm is executed for both 
model parameters computed using Bayes estimates  and Ξ (similar to the Expecta-
tion Maximization repetitive algorithm) and calculates the posterior distributions for  
and Ymiss, q( ) and q(Ξ) [5], before the missing values in Y are imputed using: 
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^
( )  Y q d= Ξ Ξ Ξ  (1) 

( ) ( | , )obs
trueq p Y θΞ = Ξ  (2) 

where true is the posterior distribution of the missing value. BPCA however only 
considers the global correlation structure of the data, so this algorithm is not well 
suited for data which has a strong local correlation structure. 

2.1.3   k-Nearest Neighbour (KNN) [12]  
This algorithm estimates the missing value Ξ for gI(J), by selecting k genes whose 
expression vectors are similar to gI(J) [12]. The k genes are selected by computing the 
distance of gI from all the other genes in m nY ×∈ for sample J. The missing value is 
then estimated as the weighted average of the corresponding entries in the selected k 
expression. The Euclidean distance used by KNN is sensitive to outlier values which 
may be present in microarray data; although log-transforming the data significantly 
reduces their effects on gene similarity determination [12]. The main drawbacks of 
KNN are that it does not consider negative correlations between data which can lead 
to higher estimation errors [4] and secondly, as with LSImpute, there is no determinis-
tic method to resolve the best value of k. 

2.1.4   Collateral Missing Value Estimation (CMVE) [1]  
This new algorithm, which is detailed in Fig. 2, is based on generating multiple paral-
lel missing value estimations, which are subsequently combined to construct the final 
imputation value. For example, if value gI(J), of gene I and sample J is missing, then 
firstly the diagonal covariance of I is computed together with the other gene expres-
sions using (3), where m is the number of genes, I is the gene number with missing 
value for sample J and Gi is the gene in Y, other than I. Rows are then sorted accord-
ing to their covariance, with the first k-ranked covariate genes Rk being selected. 

1
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Covariance is used in CMVE instead of a distance function because it considers both 
negative and positive correlation values, in contrast to the Euclidean distance used by 
KNN, which only considers positive correlations [13]. Another option would have 
been to use Pearson Correlation, though the overall effect is exactly same for nor-
mally distributed data i.e. z-scored [14], so therefore covariance is chosen due to its 
lower computation complexity. The missing values are then estimated by fusing to-
gether multiple estimates 1, 2 and 3 (see (9)), with the various steps involved in 
the CMVE imputation algorithm now discussed.  

1 is the estimate of gI(J) (Step 4a) using the LSImpute linear regression method 
(Section 2.1.1), while Step 4b estimates two other sets of missing values 2 and 3, 
the former is estimated using: 

2

2 1 1

k k
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φ η ξ

= =
Φ = + −

 
(4) 
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Pre Condition:  Gene expression matrix Y with m number of genes, n samples, I 
missing values, index=1  
Post Condition: Y without any missing values. 
Algorithm: 
Step 1 Compute absolute covariance C using (3) 
Step 2 Rank genes (rows) based on C  
Step 3 Select the k most effective rows Rk 

Step 4 Use values of Rk  to  
      Step 4a Estimate value 1 using Least Square Regression 
      Step 4b Compute 2 and 3 using (4) and (5) 
Step 5 Compute missing value of  I[index] using (9) and reuse in future predictions  
Step 6 Increment index and Repeat Steps 1–5 until all missing values of G are 
estimated 

Fig. 2. Collateral Missing Value Estimation (CMVE) Algorithm 

While the value of 3 is computed using:  
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where  and  in (4) and (5) are obtained using the Non Negative Least Square 
(NNLS) method [4]. The aim is to find a linear combination of models, that best fit Rk 
and I. The objective function in NNLS is used to minimise the prediction error 0 as:   

0, min( )φ η ξ=  (6) 

Linear programming is used to compute the coefficients  that generate the minimum 
prediction error and residual . The value of 0 in (6) is calculated using: 

0 max( ( . ))kSV R Iξ φ= −  (7) 

where SV are the singular values of the difference vector between product Rk and 
prediction coefficients  with the gene expression row I containing missing values. 
The tolerance used by the linear programming method to compute vector  is: 

max( ( ))k fTol k N SV R N= × × ×  (8) 

where k = number of predictor genes Rk and Nf is the number of predictor gene sam-
ples. Finally, value  for gI(J) is computed (Fig. 2. Step 5) using: 

1 2 3. . .χ α β γ= Φ + Φ + Φ  (9) 

where ,  and  are set to 0.33 to ensure an equal weighting to the respective esti-
mates 1, 2 and 3. The rationale for this choice is that as each estimate is highly 
data dependent, it avoids any bias towards one particular estimate. 

After imputing the missing values, significant genes are selected using BSS/WSS. 
The following section provides a short overview of this technique, together with the 
motivation for using this gene selection algorithm. 
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2.2   Feature Selection Method: Between Group to Within Group Sum of 
Squares (BSS/WSS)  

This gene selection method identifies those genes which concomitantly have large 

inter-class variations and small intra-class variations. For any gene I in 
m nY ×∈  

BSS/WSS is calculated as follows:  

2

1 1

2

1 1

( )( )
( ) / ( ) ,

( )( )

T Q

t qI It q

T Q

t It qIt q

F L q Y Y
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− −

= =
−

= =

= −
=

= −
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where T is the training sample size, Q is the number of classes and F(•) is a Boolean 

function which is 1 if the condition is true, and zero otherwise. JY
−

denotes the aver-

age expression level of gene I across all samples and 
q IY
−

is the average expression 

level of gene I across all samples belonging to class q. Genes are then ranked by 
BSS/WSS ratios, from the highest to the lowest to form a significant gene expression 
matrix ϑ , with the first p genes selected for subsequent class prediction. This particu-
lar gene selection method is preferred because of its wide usage, model independence 
and ability to increase class separability [15]. To eliminate all the correlated genes 
from p, a Weighted Partial Least Square (WPLS) algorithm is applied. The attraction 
of combining WPLS with BSS/WSS in the gene selection process is that BSS/WSS 
does not simultaneously select multiple genes and so accounts for gene inter-
dependency. Also, it ignores model uncertainty by firstly predicting the set of relevant 
genes and then the relevant class [16], while WPLS takes cognisance of model uncer-
tainty by considering class prediction accuracy. In circumstances where only WPLS is 
applied, the selected genes will be highly dependent on the prediction model [8]. 
BSS/WSS also provides a smaller gene-to-sample ratio which results in shorter con-
vergence times for the WPLS algorithm. 

2.3   Class Prediction: Ridge Partial Least Squares (RPLS) 

For class prediction, several different approaches have been proposed including GA, 
NN, SVM [10] and DLDA, however the Ridge Partial Least Squares (RPLS) method 
has demonstrated better performance for gene expression data classification due to its 
ability to handle numerical degeneracy of multi-collinearity in gene expression data 
by penalizing the likelihood [7]. RPLS uses Partial Least Squares (PLS) with Penal-
ized Logistic Regression (PLR) for class prediction and comprises three major steps: 

1- Replace class labels with the continuous pseudo-response variable Z ∞ and then 

estimate Z ∞ and the weighted matrix W ∞ using Iterative Re-Weighted Least 
Square with Ridge Penalty (RIRLS): 

( , ) ( , , ),Z W RIRLS L Y∞ ∞ = λ  (11) 

where  is a positive real constant derived by minimizing the Bayesian Information 
Criterion (BIC) [17] and L is a set containing discrete class labels.  
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2-    Matrices Z ∞ and W ∞  are used to compute 
^

1pα +∈ using the WPLS method: 

,^
( , , , ),

PLS

WPLS Z Y W∞ ∞=
κ

α κ  (12) 

where Y is the input matrix and  is a positive integer which determines the number of 
iterations.  
3-  Finally, the class response is determined using Linear Logistic Discrimination 
(LLD), where the conditional class probability of response L for a given data Y is: 

^
P(L = 1|Y = y;  ) ,α  (13) 

where parameter
^

1pα +∈  is estimated using (12) and p is number of significant 
genes determined from BSS/WSS (Section 2.2). The probability P in (13) is given by: 

^ ^
),P(L = 1|Y = y;  )  = h([1  y]α α  (14) 

where h( ) = 1/[1+exp(− )] and the quantity 
^

)h([1  y]α  is a linear predictor. The 

log-likelihood of the observations of parameter 
^
α  is given by: 

^ ^ ^

1
( ) { ( ) ln[1 exp( ( ))]},

n

i i ii
l L

=
= − +α υ α υ α  (15) 

which for all 
^ ^

1 , ( ) ( )i ii n Zυ α α≤ ≤ = and Z = [ϒn Y] of size n × (p+1) and ϒn is the 
column matrix of size n. The class label L = 1 if >1-℘ ℘ and zero otherwise where:  

^
).h([1  y]℘ = α  (16) 

The following Section provides a detailed analysis of the empirical results confirm-
ing the improved performance of the proposed imputation framework (Fig. 1) com-
pared to existing approaches. 

3   Results Analysis 

To quantitatively evaluate the performance of the different imputation methodologies 
to improve gene selection and classification, the established breast cancer microarray 
dataset [9] was used in all the experiments. The dataset contains 7, 7 and 8 samples of 
BRCA1, BRCA2 and Sporadic mutations (neither BRCA1 nor BRCA2) respectively, 
with each data sample containing logarithmic microarray data of 3226 genes. To as-
sess the affect of missing values on gene selection, a set of significant genes  was 
selected using the BSS/WSS from the original data with no missing values, to serve as 
a bench mark. Then, between 1% and 5% of expression values were randomly re-
moved from the actual dataset. This was followed by imputation using ZeroImpute, 
BPCA, LSImpute, KNN and CMVE respectively. Significant genes were selected 
from these imputed matrices iteratively and compared with the  to compute True 
Positive (TP) rate. Fig.3. demonstrates high TP rate achieved by CMVE,  compared to  



138 M.S.B. Sehgal, I. Gondal, and L. Dooley  

True Positive Rate of Significant Genes

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5

% Missing Values

T
ru

e 
P
os

iti
ve

 R
at
e

CMVE

BPCA

LSImpute

KNN

ZeroImpute

 

Fig. 3. True Positive Rate of 50 Most Significant Genes 

other imputation techniques due to its better estimation ability, for a set of 50 signifi-
cant genes. Also, the same improved performance was observed for higher number of 
selected genes. 

To investigate the impact of estimation on class prediction, again, between 1% and 
5% of data values were randomly removed and the most significant genes were se-
lected using the BSS/WSS and WPLS combination, followed by classification using 
the RPLS algorithm, with missing values being estimated using ZeroImpute, BPCA, 
LSImpute, KNN and CMVE respectively.  

The validation results were generated using k-fold (leave one out) cross validation. 
The motivation to use this technique over the classical hold out or random resampling 
methods was that it uses data sets evenly both for training and testing, thereby giving 
better estimation of the classification rates. To remove the bias in the gene selection 
step, significant genes were selected by using the training folds only while selecting 
the corresponding genes in the validation fold. 
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Fig. 4. Class Prediction Accuracy of 1% Missing Valued Gene Expression Data 

Figs. 4-7 show various individual classification accuracies for the range of missing 
values from 1% to 5%, while Fig. 8 plots the overall classification performance for 
the range of missing values, which in particular confirms CMVE consistently outper-
formed BPCA, LSImpute, KNN and ZeroImpute. In particular, CMVE performed far 
better than BPCA especially for higher number of missing values because BPCA only 
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Class Prediction Accuracy for 0.03 Missing Value Probability
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Fig. 5. Class Prediction Accuracy of 3% Missing Valued Gene Expression Data 
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Fig. 6. Class Prediction Accuracy of 4% Missing Valued Gene Expression Data 
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Fig. 7. Class Prediction Accuracy of 5% Missing Valued Gene Expression Data 

considers global correlations and also does not consider estimated values for future 
estimates which leads to higher estimation errors [1]. 

The individual results interestingly reveal that LSImpute provided a slightly im-
proved prediction accuracy compared with CMVE at 4% missing values (Fig. 8) in 
the Sporadic dataset, due to the higher classification accuracy achieved for this dataset 
(Fig. 6), though for all other datasets, CMVE performed either equally well or better 
than LSimpute at 4%  missing  values  (Fig. 6 BRCA1).  The reason  for this  apparent  
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Fig. 8. Overall Class Prediction Accuracy 

anomaly is that in computing the final missing value in (9), CMVE gives equal 
weighting to all three individual estimates in order to provide an unbiased estimate, a 
strategy which may not be optimal in certain cases.  

Also, noteworthy is the fact ZeroImpute performed better than the other estimation 
techniques, including CMVE, for BRCA2 class when data had 3% missing values  
(Fig. 5, BRCA2) because the data between classes were more separable and thus easier 
to classify, i.e., zero values actually improved separability. These occurrences how-
ever, are very reliant on serendipity as to when better accuracy is achieved and thereby 
superior separation in terms of gene selection and class prediction. In practice, it is 
highly improbable as for the vast majority of datasets, zero imputation does not im-
prove separability because for instance if a particular gene has missing values, for both 
classes to be classified, ZeroImpute produces  the  same  value, namely  zero [18].  This  
means the gene has the same value for both classes despite some genes being more 
significant than others, so it is always better to attempt to accurately estimate missing 
values rather than to just impute zero values. 

To evaluate the estimation performance of all the imputation algorithms and also 
corroborate the superior performance of CMVE, the two-sided Wilcoxon Rank sum 
statistical significance test was applied. The motivation for using this particular test is 
that compared to some other parametric significance tests [19], it does not mandate 
data of equal variance, which is vital given that the variance of data can be disturbed 
due to erroneous estimation, especially for ZeroImpute. To test the hypothesis H0, Y  
Yest where Y and Yest are the actual and estimated matrices respectively, the P-value of 
the hypothesis is calculated using: 

)0, r rH  P-Value 2P (R y= ≤  (17) 

where yr is the sum of the ranks of observations for Y and R is the corresponding ran-
dom variable.  

Fig. 9 plots the average P value of Ho for the range of estimations for between 1% 
and 5% missing values for each of the aforementioned imputation techniques. The 
results show CMVE provides the best performance, as a low P value of H0 rejects the 
null hypothesis  [19], while not surprisingly ZeroImpute exhibits the largest disparity 
with the original data because it does not consider any underlying correlation  
structure latent in the data. 
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Fig. 9. Two-Sided Wilcoxon Rank Sum Significance Test Results 

4   Conclusions 

This paper has presented a new framework based on the Collateral Missing Value 
Estimation (CMVE) algorithm for accurate missing value estimation for gene selec-
tion and class prediction. CMVE has demonstrated superior imputation performance 
compared to the Bayesian Principal Component Analysis (BPCA), Least Square Im-
pute (LSImpute), k-Nearest Neighbour (KNN) algorithm and ZeroImpute method, for 
estimating randomly missing values over a probability range from 0.01 to 0.05 in the 
BRCA1, BRCA2 and Sporadic genetic mutation samples present in breast cancer. 
Experimental results vindicate that CMVE consistently outperformed comparative 
methods in terms of their classification accuracies by exploiting positive and negative, 
as well as local and global data correlations. The Between Group to within Group Sum 
of Squares (BSS/WSS) and Weighted Partial Least Square (WPLS) combination 
which was used as the feature selection method, together with the Ridge Partial Least 
Squares (RPLS) classifier collectively provided consistently improved classification 
performance for all experiments on the test microarray dataset, when combined with 
CMVE. A significance test also confirmed the fundamental hypothesis that accurate 
missing value estimation is essential to ensure subsequent superior class prediction 
and gene selection. 
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Abstract. Some non-coding small RNAs, known as microRNAs (miR-
NAs), have been shown to play important roles in gene regulation and
various biological processes. The abnormal expression of some specific
miRNA genes often results in the development of cancer. In this paper,
we find discriminatory miRNA patterns for cancer classification from
miRNA expression profiles. The experimental results show that the ex-
pression patterns from a small set of miRNAs are very accurate in predic-
tion. Further, the experimental results also suggest that the expression
patterns of these informative miRNAs are conserved in different verte-
brates during the evolution process.

1 Introduction

More and more evidences show that miRNAs play important roles in gene reg-
ulation and various biological processes [1, 2, 3]. Some recent work has reported
that the abnormal expression of some specific miRNA genes often results in the
development of cancer [3, 4, 5].

Lu et al. [6] described a new bead-based flow cytometric technique to obtain
miRNA expression profiles, which is used to capture the concentration levels
of miRNAs in different tissues. The miRNAs show globally lower expression in
cancer tissues than in normal tissues [6]. However, it is still not clear which
miRNAs contribute more information to the normal/cancer distinction, since
complex prediction models, like k-Nearest-Neighbors (kNN) [7] and Probabilistic
Neural Networks (PNN) [8], are used in [6]. These models are black-boxes and
very hard to understand.

In this paper, we aim at finding informative expression patterns of a small sub-
set of miRNAs for cancer classification. We apply the Discrete Function Learning
(DFL) algorithm [9] to the miRNA expression profiles in [6] to find the subset of
miRNAs that shows strong distinction of expression levels in normal and tumor
tissues.

In this study, we find that a small subset of miRNAs, common for differ-
ent cancer types, is highly informative and discriminatory. The classifier, built
from 75 human normal/tumor tissue samples, only contains these features and
successfully obtains 100% accuracy when predicting 12 independent samples of

J. Li et al. (Eds.): BioDM 2006, LNBI 3916, pp. 143–154, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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mouse. This result suggests that the expression patterns of these informative
miRNAs are conserved in different vertebrates.

We also compare the performances of the DFL algorithm to those from six
other classification algorithms. The DFL algorithm obtains better or comparable
prediction accuracies to those from the compared algorithms and to the result
reported in the literature. However, it is worth mentioning that most of the com-
pared methods, such as the Naive Bayes [10] and k-Nearest-Neighbors algorithm
[7], use complex models that suffer the risk of overfitting the training data set.

The rest of the paper are organized as follows. In Section 2, we briefly review
the DFL algorithm. In Section 3, we introduce the data sets and display the
results. In Section 4, we summarize this paper.

2 Methods

In this section, we briefly review the our method. The details of the DFL algo-
rithm are shown in supplementary Figure S1 to S3 1 and in [9].

2.1 The Discrete Function Learning Algorithm

We will first introduce our notation. We use capital letters to represent discrete
random variables, such as X and Y ; lower case letters to represent an instance of
the random variables, such as x and y; bold capital letters, like X, to represent
a vector; and lower case bold letters, like x, to represent an instance of X.
The cardinality of X is represented with |X|. In the remainder parts of this
paper, we denote the attributes except the class attribute as a set of discrete
random variables V = {X1, . . . , Xn}, the class attribute as variable Y . In miRNA
profiles, Xis stand for the expression levels of the miRNA genes.

The entropy of a discrete random variable or vector X is defined in terms of
probability of observing a particular value x of X as [11]:

H(X) = −
∑
x

P (X = x)logP (X = x). (1)

The entropy is used to describe the diversity of X. The more diverse a variable
or vector is, the larger entropy it will have. Generally, vectors are more diverse
than individual variables, hence have larger entropy. Hereafter, for the purpose
of simplicity, we represent P (X = x) with p(x), P (Y = y) with p(y), and so on.
The mutual information between a vector X and Y is defined as [11]:

I(X; Y ) = H(Y ) − H(Y |X) = H(X) − H(X|Y )

= H(X) + H(Y ) − H(X, Y ) =
∑
x

∑
y

p(x, y)log
p(x, y)

p(x)p(y)
. (2)

1 The supplements of this paper are available at http://www.ntu.edu.sg/home5/
pg04325488/miRNA05.htm.
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Mutual information is always non-negative and can be used to measure the
relation between two variable, a variable and a vector (Equation 2), or two
vectors. Basically, the stronger the relation between two variables, the larger
the mutual information they will have. Zero mutual information means the two
variables are independent or have no relation.

We restate a theorem about the relationship between the mutual information
I(X; Y ) and the number of attributes in X.

Theorem 1 (McEliece, 1977 [12], p. 26). I({X, Z}; Y ) ≥ I(X; Y ), with
equality if and only if p(y|x) = p(y|x, z) for all (x, y, z) with p(x, y, z) > 0.

In Theorem 1, it can be seen that {X, Z} will contain more or equal informa-
tion about Y as X does. To put it another way, the more variables, the more
information is provided about another variable.

In [13], it is proved that if H(Y |X) = 0, then Y is a function of X . Since
I(X ; Y ) = H(X) − H(Y |X), it is immediate to obtain Theorem 2.

Theorem 2. If the mutual information between X and Y is equal to the entropy
of Y , i.e., I(X; Y ) = H(Y ), then Y is a function of X.

The entropy H(Y ) represents the diversity of the variable Y . The mutual in-
formation I(X; Y ) represents the relation between vector X and Y . From this
point of view, Theorem 2 actually says that the relation between vector X and
Y is very strong, such that there is no more diversity for Y if X has been
known, as shown in Figure 1 (a). In other words, the value of X can fully deter-
mine the value of Y . We call the subset of features that satisfy the criterion of
Theorem 2 as the Essential Attributes (EAs), since they essentially determine
the class attribute.

A classification problem is trying to learn or approximate a function, which
takes the values of attributes (except the class attribute) in a new sample as
input and output a categorical value indicating its class, from a given training
data set. The goal of the training process is to obtain a function which makes the
output value of this function be the class value of the new sample as accurately

H(Y)

H( )X

I( ;Y)X

(a) (b)

Fig. 1. The Venn diagram of H(X),H(Y ) and I(X, Y ), when Y = f(X). (a) The
noiseless case, where the mutual information between X and Y is the entropy of Y . (b)
The noisy case, where the entropy of Y is not equal to the mutual information between
X and Y strictly. The shaded region is resulted from the noise. The ε value method
means that if the area of the shaded region is smaller than or equal to ε × H(Y ), then
the DFL algorithm will stop searching process, and build the function for Y with X.
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as possible. From Theorem 2, the problem is converted to finding a subset of
attributes U ⊆ V whose mutual information with Y is equal to the entropy of Y ,
where the U is the EAs which we are trying to find from the training data sets.

For n discrete variables, there are totally 2n subsets. Clearly, it is NP-hard to
examine all possible subsets exhaustively. It is often the case that there are some
irrelevant and redundant features in the domain V. Therefore, it is reasonable to
reduce the searching space by considering those subsets with limited number of
features. In the DFL algorithm, we introduce a parameter, called the expected
cardinality of the EAs K, to restrict the searching space.

To efficiently find the EAs, the DFL algorithm performs a greedy search
in the first round of its searching procedures (see supplementary Figure S1
to S3). I(X; Y ) is evaluated with respect to H(Y ) in the DFL algorithm, as
shown in Equation 3. The DFL algorithm will first choose the feature X(1) =
argmaxiI(Xi; Y ). Next, suppose that Us−1 is the already selected feature sub-
set, then the DFL algorithm will add a new feature Z ∈ V \ Us−1 to U with

X(s) = argmaxZI({Us−1, Z}; Y ), (3)

where ∀s, 1 < s ≤ k, U1 = {X(1)}, and Us = Us−1 ∪ {X(s)}. From The
chain rule of mutual information [13], we have I({Us−1, Z}; Y ) = I(Us−1; Y ) +
I(Z; Y |Us−1). Since I(Us−1; Y ) does not change when trying different Z, the
maximization of I({Us−1, Z}; Y ) in the DFL algorithm is actually maximizing
I(Z; Y |Us−1), the conditional mutual information of Z and Y given the already
selected features Us−1, i.e., the information of Y not captured by Us−1 but
carried by Z. Hence, the redundancy of features carried by the new feature is
minimized [9].

After the EAs U are found, the DFL algorithm will construct classifiers with
U. Firstly, the irrelevant features are deleted from training data set since they
are non-essential attributes. Then, the duplicate instances of {U → Y }, i.e.,
{u → y}, are removed from the training data set to obtain the final classifier
in form of truth table. In the meantime, the counts of different instances of
{U → Y } are also stored in the classifier and will be used in the prediction
process.

After the DFL algorithm obtains the classifiers as function tables of the pairs
{u → y}, or called as rules, the most reasonable way to use such function tables
is to match the input values u, then find the corresponding output values y.
Therefore, we perform predictions in the EA space, with the 1-Nearest-Neighbor
algorithm [7]. If a new sample has the same distance to more than one rule, then
the rule with largest count value is chosen to predict the new sample.

2.2 The ε Value Method

Next, we reintroduce the ε value method. In Theorem 2, the exact functional
relation demands the strict equality between H(Y ) and I(X; Y ). However, this
equality is often ruined by the noisy data, like microarray gene expression data.
In these cases, we have to relax the requirement to obtain a best estimated result.
As shown in Fig. 1 (b), in the ε value method, if the difference between I(X; Y )
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and H(Y ) is less than ε×H(Y ), then the DFL algorithm will stop the searching
process, and will build the classifier for Y with X at the significant level ε.

2.3 The Selection of the Parameters

We discuss how to select the two parameters, the expected cardinality of the
EAs K and the ε value, of the DFL algorithm in this section.

Selection of the Expected Cardinality K. Generally, if a data set has
a large number of features, like several thousands, then K can be assigned to
a small constant, like 20, since the models with large number of features will be
very difficult to understand. If the number of features is small, then the K can
be directly specified to the number of features n.

Another usage of K is to control model complexity. If the number of features
is more important than accuracy, then a predefined K can be set. Thus, the
learned model will have less than or equal to K features.

The expected cardinality K can also be used to incorporate the prior knowl-
edge about the number of relevant features. If we have the prior knowledge about
the number of relevant features, then the K can be specified as the predetermined
value.

Selection of the ε Value. For a given noisy data set, the missing part of H(Y ),
as demonstrated in Figure 1, is determined, i.e., there exists a specific minimum
ε value, εm, with which the DFL algorithm can find the original model. If the ε
value is smaller than the εm, the DFL algorithm will not find the original model.
Here, we will introduce two methods to efficiently find the εm.

First, the εm can automatically be found by a restricted learning process.
To efficiently find the εm, we restrict the maximum number of the subsets to
be checked to

∑K−1
i=0 (n − i) ∼ K × n. The searching scope of ε is specified in

prior. If the DFL algorithm can not find a model for a noisy data set with the
specified minimum ε value, then the ε will be increased with a step of 0.01. The
restricted learning will be performed, until the DFL algorithm finds a model
with a threshold value of ε, i.e., the εm. Since only K × n subsets are checked in
the restricted learning process, the time to find εm will be O(K · n).

The restricted learning process can also be used to find optimal model. To get
optimal model, we change the ε value from 0 to the upper limit of the searching
scope, like 0.8, with a step of 0.01. For each ε value, we validate the performances
of the DFL algorithm with cross validation on the training data set. According to
the principle of Occam’s razor, simpler models are preferable to complex ones if
they can produce the same or comparable prediction performances [14]. Hence,
if the DFL algorithm reaches the same prediction accuracies with different ε
values, then the larger ε value is chosen, since the model obtained with larger
ε value contains fewer features based on Theorem 1.

Second, the εm can also be found with a manual binary search method (see
supplementary Figure S4). Since ε ∈ [0, 1), ε is specified to 0.5 in the first try. If
the DFL algorithm finds a model with ε value of 0.5, then ε is specified to 0.25
in the second try. Otherwise, if the DFL algorithm can not find a model with
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a long time, like 10 minutes, then the DFL algorithm can be stopped and ε is
specified to 0.75 in the second try. The selection process is carried out until the
εm value is found so that the DFL algorithm can find a model with it but cannot
when ε = εm − 0.01. This selection process is also efficient. Since ε ∈ [0, 1), only
5 to 6 tries are needed to find the εm on the average.

3 Results

In this section, we will first introduce the miRNA data sets. Then, we show the
experimental results. We implement the DFL algorithm with the Java language
version 1.4.1. All experiments are performed on an HP AlphaServer SC com-
puter, with one EV68 1GHz CPU and 1GB memory, running the Tru64 Unix
operating system. All the data sets and the software of the DFL algorithm are
available at the supplementary website of this paper.

3.1 Data Sets

In [6], 75 miRNA expression profiles from human are used to build a nor-
mal/cancer classifier. Within these 75 sample, 32 sample are normal samples
from 6 different tissues: colon, kidney, prostate, uterus, lung and breast. The
remaining 43 samples are tumor samples from the same 6 different tissues.

We first randomly split this data set to a training:testing ratio of 50:25, which
is the D1 data set (the D1 later) in Table 1. Then, in the data set D2 (the D2
later), we use the 75 samples as a training data set to build a classifier and to
predict 12 testing samples from the mouse tissues. The 12 testing samples are
from lung of mouse, and with the normal:tumor ratio of 5:7. In the data set D3
(the D3 later), we use 23 samples from 4 different tumor types to build a classifier
and to predict an independent testing sample of 17 poorly differentiated tumors,
the histological appearance of which was non-diagnostic, but for which clinical
diagnosis was established by anatomical context, either directly (for example, a
primary tumor arising in the colon) or indirectly (a metastasis of a previously
identified primary tumor) [6].

Because the DFL algorithm is not designed for continuous data sets, we use
a discretization algorithm from [15] to discretize the miRNA data sets. This
method has been implemented by the Weka2 software [16].

The discretization is carried out in such a way that the training data set is
first discretized. Then the testing data set is discretized according to the cutting
points of features (genes) determined in the training data set. After the dis-
cretization process, a substantial number of features, which are not contributing
to the class distinction, are assigned with only one expression state and can be
removed from the data sets. Meanwhile, the remaining discriminatory features
are assigned with limited expression intervals, with the number shown in the
column “D. Ftr. No.” of Table 1.
2 The Weka software, available at http://www.cs.waikato.ac.nz/∼ml/weka/, is writ-

ten with the Java language and is an open source software issued under the GNU
General Public License.
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Table 1. The miRNA data sets used in our experiments. The features are the ex-
pression level of different miRNAs. The columns Ftr. No., Cls. No., Train No., Test
No., D. Ftr. No., K, ε, k and r are the number of features, the number of classes, the
training sample size, testing sample size, and the number of features after applying the
discretization pre-processing method [15], the expected cardinality of the DFL algo-
rithm, the optimal ε value, the number of features chosen by the DFL algorithm and
the number of rules in the DFL classifiers respectively.

Data Ftr. Cls. Train Test D. Ftr. Settings Classifiers
Set No.∗ No. No. No. No.∗ K ε k r

D1 217 2 50 25 132 20 0.36 1 4
D2 217 2 75 12 148 20 0.14 2 5
D3 217 4 23 17 42 20 0.08 3 10

∗ The number does not include the class attribute.

3.2 Results

In all data sets, the expected cardinality of the DFL algorithm is set to 20. To ob-
tain the optimal ε value, we perform the leave-one-out cross validation (LOOCV)
on the training data sets for different ε values, from 0 to 0.8 with a step of 0.01.
Then, we choose the optimal ε values, εop, with which the DFL obtains best
prediction performances in the LOOCV processes, as shown in Figure 2. For the
D1 and D2, we also perform the training testing validation for various ε values,
we find that the DFL algorithm reaches its best performances for the testing
data sets with the εop chosen in the LOOCV processes. In our implementation,
this searching process to find optimal ε value can be done automatically. For the
D3, we only perform training testing validation, since the training sample size is
too small. The optimal settings and brief information of the obtained classifiers
of the DFL algorithm are shown in Table 1.

0 0.2 0.4 0.6 0.8
0.7

0.75

0.8

0.85

0.9

0.95

1

ε

ε
op.

 

0 0.2 0.4 0.6 0.8
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ε

ε
op.

 

(a) (b)

Fig. 2. The ε vs accuracies of the DFL algorithm. The curves marked with circles and
pentagrams are for the training/testing and the LOOCV respectively. In both data
sets, the expected cardinality of the DFL algorithm is set to 20. The εop. pointed by
an arrow is the optimal value that we choose. (a) For the data set D1. (b) For the data
set D2.
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Table 2. The miRNAs chosen as EAs by the DFL algorithm, with the settings listed
in Table 1

Data Set miRNAs Sequences
D1 hsa-miR-16 UAGCAGCACGUAAAUAUUGGCG

D2 hsa-miR-26a UUCAAGUAAUCCAGGAUAGGCU
hsa-miR-16 UAGCAGCACGUAAAUAUUGGCG

D3 hsa-miR-7 UGGAAGACUAGUGAUUUUGUU
hsa-miR-130a CAGUGCAAUGUUAAAAGGGC
hsa-miR-135b UAUGGCUUUUCAUUCCUAUGUG

Table 3. The summary of prediction errors made by different algorithms

Data Set DFL C4.5 NB 1NN kNN∗ SVM RIP
D1 (Discrete) 1 2 3 3 3 2 2
D1 (Continuous) - 2 3 0 2 2 1

D2 (Discrete) 0 0 2 1 0 1 0
D2 (Continuous) - 4 3 1 0 1 0

D3 (Discrete) 7 10 5 4 4 6 10
D3 (Continuous) - 8 11 9 7 7 11

∗ The k of the kNN algorithm is set to 5.

As shown in Figure 2, the DFL algorithm finds the optimal model with ε value
of 0.36 and 0.14 for the data set D1 and D2 respectively. The DFL algorithm
makes 1, 0 and 7 prediction errors (details available at supplementary Table S2)
for the D1, D2 and D3 data set respectively, as shown in Table 3. With these
settings, the DFL algorithm chooses the miRNAs listed in Table 2 as EAs.

We use the Weka software (version 3.4) to evaluate the performance of other
classification methods. Specifically, we compare the DFL algorithm to the C4.5
algorithm by Quinlan [17], the Naive Bayes (NB) algorithm described by Langley
et al. [10], the 1NN and k-Nearest-Neighbors (kNN) algorithm by Aha et al. [7],
the Support Vector Machines (SVM) algorithm by Platt [18] and the Ripper
algorithm (RIP) by Cohen [19]. All these methods are implemented in the Weka
software. The prediction errors of all compared algorithms are listed in Table 3,
where the values for all algorithms are the average of 10 runs.

As shown in Table 3, the DFL algorithm makes only one prediction error in
the D1, which is better than most other compared algorithms. In the D2, the
DFL algorithm correctly classifies the 12 testing samples. In the D3, the DFL
algorithm makes a slightly more prediction errors than the NB, 1NN, kNN and
SVM algorithm in the discretized data sets. But the DFL algorithm is still one
of the best if compared to other algorithms for the continuous D3 data set.

Accuracy is only one aspect of the quality of the classification models. To
comprehensively compare classifiers, the comparisons of model complexity and
training time are also important. Next, we compare the models from different
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Table 4. The comparison of models from the DFL, C4.5 and RIP algorithms. The k
and r are the number of features and the number of rules in the classifiers.

Data Set DFL C4.5 RIP
k r k r∗ k r

D1 (Discrete) 1 4 2 5 2 2
D1 (Continuous) - - 2 5 2 2

D2 (Discrete) 2 5 2 5 2 2
D2 (Continuous) - - 2 5 2 2

D3 (Discrete) 3 10 3 7 3 4
D3 (Continuous) - - 3 7 3 4

∗ The value shown is the number of nodes in the C4.5 tree.

Table 5. The comparison of training time for different classification algorithms. The
values are the training times for the discretized data sets and shown in second.

DFL C4.5 NB 1NN kNN SVM RIP
D1 0.09 0.09 0.02 0.05 0.05 0.16 0.12
D2 0.10 0.09 0.02 0.07 0.07 0.18 0.13
D3 0.09 0.09 0.02 0.03 0.03 0.32 0.02
average 0.09 0.09 0.02 0.05 0.05 0.22 0.09

algorithms in Table 4. We only compare the models of the DFL, C4.5 and RIP
algorithms. The NB, 1NN, kNN and SVM algorithms build very complex mod-
els, using all features of the data sets. The complex models from these algorithms
make it difficult for the users to understand which set of miRNAs is really im-
portant in contributing to the class distinctions between samples. As shown in
Table 4, the complexity of models from the DFL, C4.5 and RIP algorithms are
comparable. But, the DFL obtains better prediction performances than the C4.5
and RIP algorithms, as shown in Table 3.

It is interesting to point out that for the D2, the RIP algorithm chooses the
same features as those chosen by the DFL algorithm. These two algorithms both
correctly classify all the samples in the testing data set, which suggests that the
two features, hsa-miR-26a (EAM263) and hsa-miR-16 (EAM115), are critical
for differentiating the normal and cancer tissues.

Finally, we compare the training time of different classification algorithm in
Table 5. Since all compared algorithms are implemented with the Java language
and all experiments are performed on the same computer, the comparisons of
their efficiency are meaningful. As shown in Table 5, the DFL algorithm is less
efficient than the NB, 1NN and kNN algorithms, but more efficient than the
SVM algorithm, and uses almost the same time the C4.5 and RIP algorithms.
The training processes of the 1NN and kNN algorithms are efficient, but these
two algorithms use much more time in prediction.

In summary, the DFL algorithm obtains comparable prediction performances
to other compared methods, but uses more compact models.
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We also compare the results of the DFL algorithm to those reported in the
literature. Lu et al. [6] performed a top-ranking feature selection based on t-
statistic, and chose 187 features. Because the top-ranking feature selection meth-
ods include many redundant features which carry similar information about the
class attribute [9], the kNN classifier in [6] contained more features than the
model learned by the DFL algorithm. The kNN classifier in [6] also correctly
predicted the 12 testing samples in the D2. In summary, the prediction perfor-
mance of the DFL algorithm is comparable to the method in [6], but the DFL
classifier is more concise than the model in [6].

3.3 Detailed Analysis

In the D2, we find that two miRNAs, hsa-miR-26a (EAM263) and hsa-miR-16
(EAM115), are very informative. In the D2, The mutual information between
these two genes and the class attribute is 0.7 bits, contributing to 71% of the

Table 6. The DFL classifier for the data set D2

hsa-miR-16 hsa-miR-26a Class Count
(11.5171-∞) (11.49575-∞) NORMAL 31
(-∞-11.5171] (-∞-11.49575] NORMAL 1
(-∞-11.5171] (-∞-11.49575] TUMOR 37
(-∞-11.5171] (11.49575-∞) TUMOR 3
(11.5171-∞) (-∞-11.49575] TUMOR 3

(a) (b)

Fig. 3. The expression values of the miRNAs chosen by the DFL algorithm in the
D1 and D2. Normal and tumor samples are represented with circles, and pentagrams
respectively. In part (b), hollow and solid samples are from training and testing data
sets respectively. The black solid lines are the cutting points of the genes introduced in
the discretization preprocessing. (a) The expression values of hsa-miR-16 in the D1.
The samples pointed by arrows are incorrect predictions, where the left side is for the
LOOCV in the training data set and the right side is for the training/testing validation.
(b) The expression values of hsa-miR-26a and hsa-miR-16 in the data set D2, whose
homologue genes of mouse are mmu-miR-26a and mmu-miR-16. The sample pointed
by an arrow is an incorrect prediction in the LOOCV.
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diversity/entropy of the class attribute, which is 0.98 bits. When considered as a
vector, they capture 91% of the total diversity of the class attribute. The classifier
built with the DFL algorithm for the D2 is shown in Table 6. For instance, the
first rule in Table 6 means that if the expression level of hsa-miR-16 is larger
than 11.5171 and the expression level of hsa-miR-26a is larger than 11.49575 in
a sample, then the corresponding class value of this sample is NORMAL. And
this rule has happened for 31 times out of the 75 samples in the training data set.

In Figure 3, we further investigate the expression patterns of the miRNAs
chosen by the DFL algorithm for the D1 and D2. From Figure 3 (a), it is shown
that the DFL algorithm makes 3 and 1 prediction errors in the LOOCV and
training/testing validation of the D1 respectively. In Figure 3 (b), it is shown
that the classifier in Table 6 correctly predicts the 12 samples from mouse tissues.
As shown in Figure 3 (b), hsa-miR-26a and hsa-miR-16 have higher expression
levels in normal tissues than in tumor tissues, since most normal samples are
located in the upper-right region of the space defined by the two miRNAs, hsa-
miR-26a and hsa-miR-16. There is one outlier sample, pointed by an arrow,
which is an incorrect prediction during the LOOCV. On the other hand, most
tumor samples are located in the lower-left region of the space defined by the
two miRNAs, hsa-miR-26a and hsa-miR-16, which means that the two miRNAs
generally have lower expression levels in tumor tissues than in normal tissues.

4 Discussion

We have demonstrated that there exist simple and informative miRNA expres-
sion patterns, which can be used to classify normal against tumor tissues. These
patterns obtain better or comparable prediction performances to the models
learned from other classification methods compared in this paper and results
reported in the literature.

The miRNAs in the patterns learned with the DFL algorithm generally show
higher and lower expression levels in the normal and tumor tissues respectively,
which is consistent with the results in the literature [6, 20].

It has been reported that the many miRNAs are phylogenetically conserved
[1]. In this research, we find that the expression patterns of the two miRNAs,
hsa-miR-26a and hsa-miR-16, built with human miRNA expression profiles can
accurately predict the miRNA normal/tumor samples from mouse. This sug-
gests that the expression patterns of these miRNAs are also highly conserved in
vertebrates during the evolution process.
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